More views in data warehouse, can respond to the users more rapidly because the user's requests might be processed by accessing only the materialized views with higher probabilities rather than accessing base relations. But, the update duration for maintaining materialized views limits the number of materialized views in data warehouse. In this paper, we propose the algorithm for reducing update duration of materialized views, of which aggregation functions are maintained by self-maintenance. We also implement the proposed algorithm and evaluate the performance of the algorithm.
Purpose: This study was to evaluate the utilization of health care service and to provide supportive data for health care policy making in one urban area in Korea. Method: This study tested the significance of public health service using the database of an university hospital and public health center from Feb. 2000 to Dec. 2004. Data were analyzed by multidimensional analysis and data mining technique and produced the information on the classification of utilization characteristics by main disease and the total cost of use and disease association with the users of the public health center. Results: The Results were as follows: 1) Top 10 diseases in the area accounted for 22.4% of total frequency for the most recent 5 years in university hospital, while 59.0% in public health center. 2) There were significant correlations between university hospital and public health center user's insurance type and place of residence: It showed higher use of public health center for free service beneficiaries residing in Seoul than residents in nearby or local area. The medical insurance types for hospital users were more various than those for public health center users. 3) The use of hospital for patients of hypertension, diabetes mellitus and hyperlipidemia was tended to concentrate in mostly autumn and winter since August 2000, while the cost of using public health center for those patients has been steadily reduced since July 2000. 4) As a result of cluster analysis, there were classified into three homogeneous groups according to the total cost of using public health service, age, and the frequency of use. 5) The association analysis on patients with chronic disease in public health center produced a detailed information on accompanying diseases related to the incidence rate of disease of high frequency due to aging, information on drug abuse and immune disease. Conclusion: The health care policy for local community should be evaluated continuously. And the policy to build an integrated data warehousing by public health indicator system and to enhance the faithfulness of data is required.
의사결정 시스템은 전사적인 의사결정과 전략적 정보수집을 위해 거대한 량의 정보를 빠른 시간내에 제공할 것을 요구한다. 데이타 웨어하우스는 이러한 정보를 신속히 제공하기 위해 여러 지역 데이타베이스로부터 필요한 정보를 사전에 추출하고 가공 및 통합하여 별도의 저장공간에 저장한다. 일반적으로, 웨어하우스 내의 정보는 지역 데이타베이스에 저장된 정보에 대한 실체화된 뷰로서 간주하며 지역 데이타의 변경에 따라 일관성을 유지하도록 반영해야 한다. 본 논문에서는 일관성을 유지하기 위해 정보 공유가 가능한 데이타 웨어하우스 시스템의 구조와 비-보상 실체 뷰 관리 기법을 제안한다. 본 논문에서 제안한 데이타 웨어하우스 시스템의 구조는 지역 데이타베이스에서 추출된 정보를 관리하는 별도의 지역 정보 관리자를 두어 뷰 관리자들 간의 정보 공유가 가능하게 한다. 비-보상 실체 뷰 관리 기법은 지역 데이타 변경 사건에 따른 뷰 관리 시 다른 사건에 의해 영향을 받지 않도록 하기 때문에 기본의 사전 보상이나 나중 보상 기법과는 달리 추가적인 질의 처리를 요구하지 않는 기법이다.Abstract A decision support system(DSS) commonly requires fast access to tremendous volume of information. A data warehouse is a database storing the information that is extracted, filtered and integrated from several relevant local databases to reply upon aggregated queries. The information stored in the data warehouse can be regarded as materialized views. The materialized view has to be modified according to the change of the corresponding local databases to preserve the data consistency. In this paper, we propose a data warehousing system architecture allowing information sharing (DAWINS), and a non-compensating materialized view maintenance algorithm(NCA). DAWINS architecture allows relevant information to be shared by individual view managers with local data manager for each local database. Unlikely to the pre- or post-compensating algorithms, which are required to remove the effects of some events to other view in the process of view maintenance, NCA does not require any additional query processing, since a local data manager in DAWINS already maintains the effects of update events occurring in local systems.
A data warehouse is a system that collectively manages and integrates data of a company. And provides the basis for decision making for management strategy. Nowadays, analysis data volumes are reaching critical size challenging traditional data ware housing approaches. Current implemented solutions are mainly based on relational database that are no longer adapted to these data volume. NoSQL solutions allow us to consider new approaches for data warehousing, especially from the multidimensional data management point of view. In this paper, we extend the data warehouse design methodology based on relational database using star schema, and have developed a consistent design methodology from information requirement analysis to data warehouse construction for large scale data warehouse construction based on MongoDB, one of NoSQL.
대용량의 데이터가 저장되는 데이터 웨어하우징 환경에서 조인이나 집계 함수와 같은 고비용의 연산의 효율적인 처리는 매우 중요하다. 본 논문에서는 집계 함수(aggregate function)와 조인(join)이 모두 포함된 질의를 처리하는 새로운 기법을 제안한다. 제안하는 기법은 먼저 차원 테이블(dimension table)을 미리 그루핑한 후, 비트맵 조인 인덱스(bitmap join index)를 이용하여 조인을 처리하는 방식을 사용한다. 이 결과, 사실 테이블(fact table)만을 접근하여 집계 함수를 처리함으로써 기존 기법이 가지는 성능 저하의 문제점을 해결할 수 있다. 기존 기법과 제안하는 기법에 대한 비용 모델(cost model)을 정립하고, TPC-H 벤치마크를 기반으로 하는 다양한 시뮬레이션을 수행함으로써 제안된 기법의 우수성을 규명한다.
데이터 웨어하우스 이면의 있는 아이디어는 다양한 이질형 데이터베이스에 있는 데이터를 접근하는 것이 거추장 스럽다는 것이다. 이질적인 환경에서 질의를 처리하기 위해 몇 몇 처리 모듈들이 서로 협력할 필요가 있다. 그러므로 다양한 데이터 원천(source)들에서 본질적인 데이터를 함께 가져다 놓는 곳이 데이터 웨어하우스이다. 이런 방법에서 사용자들은 웨어하우스만을 질의한다. 데이터 웨어하우스 개발에서는 부가적인 보안 사항을 초래한다. 예를 들면, 다양한 데이터 탐사도구를 이용함으로써 정보를 연역할 수 있는가\ulcorner 데이터 웨어하우스를 위한 적당한 감사 프로시듀어는 무엇인가\ulcorner 본 연구에서는 데이터 웨어하우스에서의 보안 문제들을 알아본다.
The recent sudden increase of big data has characteristics such as continuous generation of data, large amount, and unstructured format. The existing relational database technologies are inadequate to handle such big data due to the limited processing speed and the significant storage expansion cost. Current implemented solutions are mainly based on relational database that are no longer adapted to these data volume. NoSQL solutions allow us to consider new approaches for data warehousing, especially from the multidimensional data management point of view. In this paper, we develop and propose the integrated design methodology based on MongoDB for big data applications. The proposed methodology is more scalable than the existing methodology, so it is easy to handle big data.
Data provenance is the background knowledge that enables a piece of data to be interpreted and used correctly within context. The importance of tracking provenance is widely recognized, as witnessed by significant research in various areas including e-science, homeland security, and data warehousing and business intelligence. In order to further advance the research on data provenance, however, one must first understand the research that has been conducted to date and identify specific topics that merit further investigation. In this work, we develop a framework based on semiotics theory to assist in analyzing and comparing existing provenance research at the conceptual level. We provide a detailed review of data provenance research and compare and contrast the research based on d semiotics framework. We conclude with an identification of challenges that will drive future research in this field.
Entity Attribute Value (EAV) is the widely used solution to represent high dimensional and sparse data, but EAV is not search efficient for knowledge extraction. In this paper, we have proposed a search efficient data model: Optimized Entity Attribute Value (OEAV) for physical representation of high dimensional and sparse data as an alternative of widely used EAV. We have implemented both EAV and OEAV models in a data warehousing en-vironment and performed different relational and warehouse queries on both the models. The experimental results show that OEAV is dramatically search efficient and occupy less storage space compared to EAV.
데이터 웨어하우스는 기업의 통합된 데이터의 저장하는 곳이며, 대게는 상당한 규모를 가지고 있다. 또한, 데이터 웨어하우스는 일반적으로 다양한 종류의 데이터를 저장함으로 데이터 웨어하우스에 저장된 데이터는 의사결정 임무에 따라서는 그 질적, 적합성에 차이를 나타내고는 한다. 이러한 데이터 웨어하우스의 특성으로 인해서 때로는 데이터 웨어하우스의 데이터의 효용성이 기업의 의사결정을 지원하는데 있어 제한적일 수 있다. 정보 시스템의 문헌에는 데이터의 질이 의사결정 성과에 미치는 영향에 대해서 많이 알려져 있지 않다. 그래서, 본 연구는 contextual data(상황적 데이터)의 질과 업무의 복잡성이 의사결정 성과에 미치는 영향에 대해서 탐구해보고자 한다. Contextual data의 질과 업무의 복잡성이 의사결정의 성과에 미치는 영향을 조사하기 위하여 웹을 기반으로 하는 데이터 웨어하우스를 이용하는 실험을 실행했다. 연구의 결과는 contextual data의 질이 의사결정의 성과에 영향을 미친다는 것을 통계적으로 보여주었다. 이러한 연구결과는 의사결정자의 의사결정 성과를 향상시키기 위해서는 데이터 웨어하우스의 contextual data의 질을 향상시켜야한다는 것을 제시하고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.