Many previous studies of data quality have focused on the realization and evaluation of both data value quality and data service quality. These studies revealed that poor data value quality and poor data service quality were caused by poor data structure. In this study we focus on metadata management, namely, data structure quality and introduce the data quality management maturity model as a preferred maturity model. We empirically show that data quality improves as data management matures.
Journal of the Korean Society for information Management
/
v.40
no.1
/
pp.51-71
/
2023
This study analyzed the government data quality management model, big data quality management model, and data lifecycle model for research data management, and analyzed the components common to each data quality management model. Those data quality management models are designed and proposed according to the lifecycle or based on the PDCA model according to the characteristics of target data, which is the object that performs quality management. And commonly, the components of planning, collection and construction, operation and utilization, and preservation and disposal are included. Based on this, the study proposed a process model for research data quality management, in particular, the research data quality management to be performed in a series of processes from collecting to servicing on a research data platform that provides services using research data as target data was discussed in the stages of planning, construction and operation, and utilization. This study has significance in providing knowledge based for research data quality management implementation methods.
The IoT environment has led to explosive growth of existing enterprise data, and how to utilize such big data is becoming an important issue in the management field. In this paper, major factors affecting the decisions of companies to utilize big data have been studied. And also, the effect of big data utilization on the management quality is studied empirically. During this process, we have studied the difference according to the award of Korean national quality award. As a result of the study, we confirmed that the five factors such as cost from technology, organization and environment perspective, compatibility, company size, chief officer support, and competitor pressure are key factors influencing big data utilization. Also, it was confirmed that the use of big data for management activities has an important influence on the six management quality factors based on MBNQA, and that the management quality level of Korean national quality award companies is relatively high. This paper provides practical implications for companies' use of big data because it demonstrates for the first time that big data utilization has an impact on management quality improvement.
Journal of the Korean Society for information Management
/
v.20
no.4
s.50
/
pp.249-275
/
2003
In companies competing for today's information society, Data quality deterioration is causing a negative influence to generate company competitiveness fall and new cost. A lot of Preceding study about data qualify have been proceeded in order to solve a problem of these data qualify deterioration. Among the sides of data qualify, it has been studied mainly on qualify of the data valve and quality of data service that are the results quality concept. However. this study studied structural qualify of the data which were cause quality concept in a viewpoint of meta data management and presented data quality management maturity model through this. Also empirically this study verified that data quality improved if the management level matured.
In principle, data from all databases and systems managed by the Ministry of Defense or public institutions must be guaranteed to have a certain level of quality or higher, but since most information systems are built and operated, data quality management for all systems is realistically limited. Most defense data is not disclosed due to the nature of the work, and many systems are strategically developed or integrated and managed by the military depending on the need and importance of the work. In addition, many types of data that require data quality management are being accumulated and generated, such as sensor data generated from weapon systems, unstructured data, and artificial intelligence learning data. However, there is no data quality management guide for defense data and a guide for selecting quality control targets, and the selection criteria are ambiguous to select databases and systems for quality control of defense data according to the standards of the public data quality management manual. Depends on the person in charge. Therefore, this paper proposes criteria for selecting a target system for quality control of defense data, and describes the relationship between the proposed selection criteria and the selection criteria in the existing manual.
Journal of Korean Society of Industrial and Systems Engineering
/
v.40
no.3
/
pp.18-26
/
2017
Defense industries which require high reliability need an optimized quality management system with well-planned implementation. And the government should examine the overall status of defense industries, then establish practical policies with a proper support plan in required areas to upgrade the quality management level of manufacturers. Thus, DTaQ developed the model for 2 years from 2014, which specialized in quality management level analysis for defense industries. And a survey has been undertaken with that model by DTaQ and Korea Research Center in 2016. The surveyed companies randomly sampled among those which have more than 30 employees and delivery history over past 3 years, and finally 106 defense industries were selected. This paper present survey method and indexes for survey of defense industry quality management level. The survey was conducted in the order of planning, data collection and data processing, and the validity and reliability of the data were verified to increase objectivity of survey results. The survey contents mainly consist of system quality and management quality. System quality includes Product Development Management, Production Operation Management, supply chain quality management, Safety & Environment Management and Reliability Management, on the other hand, management quality includes Strategic Leadership, Human Resource Management, Customer Market Management and Information & Knowledge Management. Thus this proposes the current overall quality management status of the 106 defense industries and shows level differences by company sizes and manufacturing sectors based on the result of survey. Specifically, this paper enables to track the areas which need prompt government support with the policy directions to make quality management level higher. Therefore, it is expected that this can be used as reference data in establishing quality policies for military supplies in the future.
This study empirically investigated the effect of firm-level data quality on economic performance in the Korean financial industry during 2008~2009. The data quality was measured by data quality management process index and data quality criteria by Korea Database Agency, and financial firm performance data was acquired from Financial Statistics Information System of the Financial Supervisory Service. The result showed that the data quality has statistically significant impacts on financial firm performance such as sales, operating profit, and value added. If the data quality management process index increases by one, the value added can increase by 2.3 percent. Moreover, the data quality criteria increase by one, the value added can increase by 72.6 percent.
As electronic commerce becomes more common and the data volume of e-catalog increases, a systematic approach to data quality management is being required. Upon the necessity, we propose a process-based framework for e-catalog data quality management. This is the methodology for data management and improvement activities continuously performed to satisfy the expectation of industry to e-catalog systems. In the framework, contents for quality management consist of data, quality management items, and quality management processes. These are again subdivided according to organization levels, i.e, user, data administrator, and chief information officer.
Recently, as most functional business activities in an enterprise are supported by computerized information systems, data duplication and inconsistency among functional information systems become serious problems. It brings people to have many interests on data quality management. This paper presents a case study in which a company had improved their data quality by enhancing their data quality management processes. Though the case study, we describe main issues and risk factors in the process of data quality improvement projects as well as solutions to resolve the issues, which can be referred by other companies who pursue data quality improvement. Also, the improvement effects are evaluated by multidimensional perspectives which include quantitative and qualitative measures on data quality, productivity, customer satisfaction, organization, and culture.
There are two ways to assess data quality : measurement of data itself and assessment of data quality management process. Recently maturity assessment of data quality management process is used to ensure and certify the data quality level of an organization. Following this trend, the paper presents the process reference model which is needed to assess data quality management process maturity. First, the overview of assessment model for data quality management process maturity is presented. Second, the process reference model that can be used to assess process maturity is proposed. The structure of process reference model and its detail processes are developed based on the process derivation approach, basic principles of data quality management and the basic concept of process reference model in SPICE. Furthermore, characteristics of the proposed model are described compared with ISO 8000-150 processes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.