핸드폰의 화면 크기 때문에 핸드폰에서의 지도 서비스는 문제점을 가지고 있다. 핸드폰과 같은 작은 화면에서 효율적으로 지도 데이터를 표현하기 위해서는 첫째, 지도 일반화를 이용하여 상세한 지도 데이터를 간략하게 만드는 과정이 필요하며, 둘째, 간략화된 데이터를 계층화하여 사용자의 확대 축소 명령을 빠르게 수행할 수 있어야 한다. 그러나, 기존의 연구들은 일부의 지도 일반화만 지원하거나 실시간으로 처리하지 못하는 문제점들을 가지고 있다. 본 논문에서 제안하는 LMG-tree는 계층화된 하나의 색인 트리를 사용함으로 저장 공간의 효율성을 가지고 있으며, 지도 일반화를 지원하여 실시간 지도 서비스가 가능하도록 하였다.
기계학습 모델 구축 간 트레이닝 데이터를 활용하며, 훈련 간 사용되지 않은 테스트 데이터를 활용하여 모델의 정확도와 일반화 성능을 판단한다. 일반화 성능이 낮은 모델의 경우 새롭게 받아들이게 되는 데이터에 대한 예측 정확도가 현저히 감소하게 되며 이러한 현상을 두고 모델이 과적합 되었다고 한다. 본 연구는 중심극한정리를 기반으로 데이터를 생성 및 기존의 훈련용 데이터와 결합하여 새로운 훈련용 데이터를 구성하고 데이터의 정규성을 증가시킴과 동시에 이를 활용하여 모델의 일반화 성능을 증가시키는 방법에 대한 것이다. 이를 위해 중심극한정리의 성질을 활용해 데이터의 각 특성별로 표본평균 및 표준편차를 활용하여 데이터를 생성하였고, 새로운 훈련용 데이터의 정규성 증가 정도를 파악하기 위하여 Kolmogorov-Smirnov 정규성 검정을 진행한 결과, 새로운 훈련용 데이터가 기존의 데이터에 비해 정규성이 증가하였음을 확인할 수 있었다. 일반화 성능은 훈련용 데이터와 테스트용 데이터에 대한 예측 정확도의 차이를 통해 측정하였다. 새롭게 생성된 데이터를 K-Nearest Neighbors(KNN), Logistic Regression, Linear Discriminant Analysis(LDA)에 적용하여 훈련시키고 일반화 성능 증가정도를 파악한 결과, 비모수(non-parametric) 기법인 KNN과 모델 구성 간 정규성을 가정으로 갖는 LDA의 경우에 대하여 일반화 성능이 향상되었음을 확인할 수 있었다.
이동 매제를 통한 진자지도 서비스는 전송 정보의 용량이 크고 출력 장치의 자원을 많이 요구하기 때문에 기존의 지도 데이터베이스를 그대로 사용하여 서비스할 수 없는 문제점이 있다. 또한 무선 서비스 전용 지도 데이터베이스를 별도로 구축하는 것은 막대한 중복 비용이 발생하므로 받아들이기 어렵다. 본 논문에서는 기존의 지도 데이타베이스로부터 무선 서비스에 적합한 지도를 동적으로 생성하는 새로운 기법을 제시한다. 이 기법은 기존 지도의 데이타 크기를 줄이기 위한 generalization과 생성된 지도의 데이타 크기가 임계값을 넘지 않도록 제어하는 filtering을 수행한다. Generalization은 레이어를 통합하는 단계, 세부 객체를 간소화하는 단계, 그리고 사용자 인터페이스를 처리하는 단계로 나누어 처리된다. Filtering은 약도에 포함된 객체를 카운터하는 모듈과 검색 객체와 거리에 따른 중요도로 선택하는 모듈로 데이터 크기를 대역폭 임계값 이내로 처리한다.
In automatic map generalization, the formalization of cartographic principles is important. This study proposes and evaluates the selection method for road network generalization that analyzes existing maps using reverse engineering and formalizes the selection rules for the road network. Existing maps with a 1:5,000 scale and a 1:25,000 scale are compared, and the criteria for selection of the road network data and the relative importance of each network object are determined and analyzed using $T{\ddot{o}}pfer^{\prime}s$ Radical Law as well as the logistic regression model. The selection model derived from the analysis result is applied to the test data, and road network data for the 1:25,000 scale map are generated from the digital topographic map on a 1:5,000 scale. The selected road network is compared with the existing road network data on the 1:25,000 scale for a qualitative and quantitative evaluation. The result indicates that more than 80% of road objects are matched to existing data.
Communications for Statistical Applications and Methods
/
제31권5호
/
pp.467-485
/
2024
Policymakers and educational researchers have grown increasingly interested in the extent to which study results generalize across different groups of students. Current generalization research in education has largely focused on the compositional similarity among students based on a set of observable characteristics. However, generalization is defined differently across various disciplines. While the concept of compositional similarity is prominent in causal research, generalization among the statistical learning community refers to the extent to which a model produces accurate predictions across samples and populations. The purpose of this study is to assess the extent to which concepts related to contextual generalization (based on compositional similarity) are associated with the ideas related to model generalization (based on accuracy of prediction). We use observational data from the Programme for International Student Assessment (PISA) 2015 wave as a case study to examine the conditions under which contextual and model generalization are aligned. We assess the correlations between statistical measures that quantify compositional similarity and prediction accuracy and discuss the implications for generalization research.
공간데이터의 일반화는 기존에 구축된 공간 데이터베이스로부터 새로운 소축척 데이터베이스를 유도할 수 있는 중요한 GIS 기법이다. 공간데이터의 일반화는 공간데이터의 기하 및 속성데이터를 변형[3, 15] 시킬 뿐만 아니라, 데이터 모델의 관계를 따라서 연결되어 있는 다른 공간데이터도 변형[8-10, 14]시킨다. 이것을 공간데이터 일반화의 파급이라고 한다. 이 파급을 처리하지 않은 채 일반화를 계속 진행하면, 일관성 혹은 원시데이터베이스 정보 중의 일부가 손실된 채 새로운 데이터베이스가 생성될 수 있다. 그럼에도 불구하고 일반화에 관한 기존 연구들은 공간데이터의 상호관계를 무시한 채 독립된 하나의 공간데이터에 대한 유도를 위해서 방법들을 제시해 왔다. 그리고 그 결과 공간데이터의 기하 및 속성을 변형시키는 많은 일반화 연산자들이 제시되어졌다. 본 연구는 이 일반화 연산자들이 어떤 공간데이터에 적용되었을 때 그와 관련된 다른 공간데이터에도 파급 적용될 수 있도록, 일반화 연산자를 확장을 시킬 것이다. 이 일반화 파급을 처리하기 위해서, 본 연구는 일반화 과정에서 반드시 고려될 필요가 있는 규칙들을 제시한다. 그리고 일반화 연산자들이 반드시 준수해야 하는 규칙들을 기술한다. 이 규칙들은 관계대수로서 표현될 수 있으므로, SQL로 쉽게 전환할 수 있다. 이 확장된 일반화 연산자들의 적합성을 검토하기 위해서 간단한 프로토타입을 구현하였다.
대용량의 공간(spatial) 데이터베이스에서 사용자에게 관심있고 일반화된 지식을 추출하는 것은 지형 정보 시스템이나 지식 베이스 시스템의 개발에 중요한 기법중의 하나이다. 본 논문은 공간 데이터 마이닝에 널리 사용되는 일반화(generalization) 방법을 확장한 공간 데이터 마이닝 모듈에 공간 데이터를 추론할 수 있도록 구축된 규칙베이스(rulebase)를 통합한 공간데이터 마이닝 시스템을 제안한다. 이를 위한 전위기로서 공간 데이터 우선(spatial data dominated)과 비공간 데이터 우선(nonspatial data dominated) 마이닝을 병합한 방식과 다중 주제도(multiple thematic map)가 주어졌을 때의 공간 지식을 추출해 낼 수 있는 방식을 제안한다. 또한 후위기로서 공간 객체들간의 위상 관계(topological relationship)를 추론하기 위한 공간 규칙 베이스를 구축한다.
GIS 분야에서 지도 일반화는 공간자료의 상세도를 결정하여 효과적으로 자료를 가시화(Visualixation)하거나 자료의 해상력을 변화시켜 변환하는 기능을 수행한다. 최근까지 지도 일반화는 선사상 (Line Features)에 집중되었고, 수치지도를 구성하고 있는 정보량과 그 중요성에 비하여 점사상 (Point Features)에 대한 연구는 상대적으로 미미하였다. 이러한 맥락에서 본 연구는 점사상에 대한 구체적인 일반화 방안을 모색하는데 목적을 둔다. 특히 점사상의 일반화에서 원자료의 기하학적 특성을 파악하는데 가장 중요하게 고려한 요소로 점사상의 분포패턴을 선정하였다. 즉 'Grieg-Smith방법'을 활용한 방격분석 (Quadrat Analysis)과 최근린분석 (Nearest-Neighbour Analysis)를 통해 점사상이 갖고 있는 분포패턴의 특성을 찾아낸 다음, 이를 변형시키지 않도록 일반화의 기준거리(Threshold)를 설정하여 점사상을 제거하는 방법을 통해 점사상의 일반화를 시도하였다. 따라서 이 연구에서 제시한 점사상의 일반화 방안은 원래 점사상이 갖고 있는 기하학적 특성을 최대한 유지한다.
지리정보시스템은 처리 속도의 향상과 비쥬얼라이징의 개선이 필요하다. 이를 위해서는 맵 일반화와 레벨별 상세화 개념이 요구된다. 기존의 공간 인덱싱은 지도 일반화를 지원하지 않거나 지원하더라도 모든 지도 일반화 연산을 제공하지 않는다는 문제점을 가진다. 본 논문에서는 이를 위해 모든 일반화 연산을 지원하는 새로운 인덱스 구조인 LR트리를 제안한다. 또한 LR트리를 검색, 삽입, 삭제하기 위한 알고리즘을 기술하고, 성능 분석을 수행한다. 성능 분석을 통해 제안된 인덱스 구조가 지도 일반화를 지원하는데 있어 다른 공간 인덱싱 기법보다 우수한 성능을 나타냄을 보인다.
This study proposes a quantification algorithm for a PLS method with several sets of variables. We called the quantification method for PLS with more than 2 sets of data a generalization. The basis of the quantification for PLS method is singular value decomposition. To derive the form of singular value decomposition in the data with more than 2 sets more easily, we used the constraint, $a^ta+b^tb+c^tc=3$ not $a^ta=1$, $b^tb=1$, and $c^tc=1$, for instance, in the case of 3 data sets. However, to prove that there is no difference, we showed it by the use of 2 data sets case because it is very complicate to prove with 3 data sets. The keys of the study are how to form the singular value decomposition and how to get the coordinates for the plots of variables and observations.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.