• Title/Summary/Keyword: Damping System

Search Result 2,253, Processing Time 0.027 seconds

Effect of Microstructure on the Damping Capacity and Tensile Properties of Fe-Al-Mn Alloys (Fe-Al-Mn 합금의 진동감쇠능 및 인장성질에 미치는 미세조직의 영향)

  • Son, D.U.;Kim, J.H.;Lee, J.M.;Kim, I.S.;Kim, H.C.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.8 no.4
    • /
    • pp.31-37
    • /
    • 2004
  • The damping capacity and strength of Fe-2Al-26Mn alloys have been studied for the development of new materials with high strength and damping capacity. Particularly, the effect of ${\alpha}'\;and\;{\varepsilon}$ martensite phase, which constitutes the microstructure of cold rolled Fe-Al-Mn alloys, has been investigated in terms of the strength and damping capacity of the alloys. The damping capacity rises with increasing the degree of cold rolling and reveals the maximum value at 25% reduction. The damping capacity is strongly affected by the volume fraction of ${\varepsilon}$ martensite, while the other phases, such as ${\alpha}'$ martensite and austenite phase, actually exhibit little effect on damping capacity. Considering that tensile strength increases and elongation decreases with increasing the volume fraction of ${\alpha}'$ martensite, it is proved that tensile strength is mainly affected by the amount of ${\alpha}'$ martensite.

  • PDF

A study on performance assessment of WEC rotor in the Jeju western waters

  • Poguluri, Sunny Kumar;Bae, Yoon Hyeok
    • Ocean Systems Engineering
    • /
    • v.8 no.4
    • /
    • pp.361-380
    • /
    • 2018
  • The dynamic performance of the wave energy converter (WEC) rotor with different geometric parameters such as depth of submergence and beak angle has been assessed by considering the linear potential flow theory using WAMIT solver and along with the computational fluid dynamics (CFD). The effect of viscous damping is incorporated by conducting numerical free decay test using CFD. The hydrodynamic coefficients obtained from the WAMIT, viscous damping from the CFD and estimated PTO damping are used to solve the equation of motion to obtain the final pitch response, mean optimal power and capture width. The viscous damping is almost 0.9 to 4.6 times when compared to the actual damping. It is observed that by neglecting the viscous damping the pitch response and power are overestimated when compared to the without viscous damping. The performance of the pitch WEC rotor in the Jeju western coast at the Chagwido is analyzed using Joint North Sea Wave Project (JONSWAP) spectrum and square-root of average extracted power is obtained. The performance of WEC rotor with depth of submergence 2.8 m and beak angle $60^{\circ}$ found to be good compared to the other rotors.

A Basic Study for Tuning Power System Stabilizer Part I : Analyzing the Torque Characteristics of Power System Corresponding to Operating Conditions (PSS 튜닝을 위한 기본 연구 Part I : 계통 운전조건에 대한 토오크 특성분석)

  • 김동준;문영환;김태균
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1064-1072
    • /
    • 1999
  • The basic concepts, which are related to the PSS tuning conditions and performance conditions for the safe of determination of PSS gain and compensation of phasor lagging, are thoroughly investigated in this first part. The performance conditions, where the power system has the lowest inherent damping torque and PSS should provide maximum damping torque, are examined by analysing synchronizing torque and damping torque supplied by the voltage control loop at the oscillation frequency. PSS tuning conditions are also investigated by observing the phasor lagging and the gain, resulted from power system-generator-excitation system depending on operating conditions, such as generator active power, reactive power, transmission impedance and AVR gain. The basic concepts developed in this PartImake it possible to lay foundation for the discussion of PSS tuning in Part II.

  • PDF

Damping performance Analysis for an Electronically Contralled Shock Absorber (연속 가변형 충격흡수기의 감쇠성능 해석)

  • 박재우;이동락;백운경
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.192-201
    • /
    • 2001
  • Analyzing internal structure, flow rate and dynamic behavior characteristics of electronically controlled shock absorber, damping performance limit is identified to comprise the two reciprocal characteristics of ride comfort and handling safety. Regardless of its lower performance than the active suspension control system, the semi-active suspension control system has been taking interest because of its absolutely higher performance than passive suspension system. Since the pervious studies have been concentrated mostly on analytic aspect and survey on the internal structure of the shock absorber remain insufficient, the main discourse of this paper is focused on analyzing the nonlinear shock absorber which varies the damping force of semi-active suspension system and the dynamic characteristics of the solenoid valve, a sort of pressure valve, and proposing the design factors of importance.

  • PDF

A study on the variable damping characteristics of the continuous controlled semi-active suspension system and the effect analysis of the vehicles motion performance (연속제어방식의 반능동형 전자제어 현가장치의 가변댐퍼 감쇠력 특성 연구 및 차량 운동성능에 미치는 효과 분석)

  • 소상균;조경일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.190-198
    • /
    • 1999
  • Continuously controlled semi-active suspension system may improve ride and handling properties. Here, as a mechanism to control the fluid flow solenoid valve mechanism is introduced and added to the basic passive damper to create damping forces of the shock absorbers. The system may produce continuously controlled damping forces in both solenoid valve only and combination with passive shock absorber including fluid flow is studied, and then the combined model is added to the full vehicle model to evaluate its ride and handling performance. Finally, the simulation results are compared to the vehicle models having similar suspension system.

  • PDF

New three-layer-type hysteretic damper system and its damping capacity

  • Kim, Hyeong Gook;Yoshitomi, Shinta;Tsuji, Masaaki;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.821-838
    • /
    • 2012
  • This paper proposes a new three-layer pillar-type hysteretic damper system for residential houses. The proposed vibration control system has braces, upper and lower frames and a damper unit including hysteretic dampers. The proposed vibration control system supplements the weaknesses of the previously proposed post-tensioning vibration control system in the damping efficiency and cumbersomeness of introducing a post-tension. The structural variables employed in the damper design are the stiffness ratio ${\kappa}$, the ductility ratio ${\mu}_a$, and the ratio ${\beta}$ of the damper's shear force to the maximum resistance. The hysteretic dampers are designed so that they exhibit the targeted damping capacity at a specified response amplitude. Element tests of hysteretic dampers are carried out to examine the mechanical property and to compare its restoring-force characteristic with that of the analytical model. Analytical studies using an equivalent linearization method and time-history response analysis are performed to investigate the damping performance of the proposed vibration control system. Free vibration tests using a full-scale model are conducted in order to verify the damping capacity and reliability of the proposed vibration control system. In this paper, the damping capacity of the proposed system is estimated by the logarithmic decrement method for the response amplitudes. The accuracy of the analytical models is evaluated through the comparison of the test results with those of analytical studies.

Effects of Ti on Mechanical Property and Damping Capacity in Hot-rolled Fe-17%Mn Alloy (열간압연한 Fe-17wt%Mn 합금의 기계적 성질과 진동감쇠능에 미치는 티타늄 첨가의 영향)

  • Kim, Tai-Hoon;Kim, Jung-Chul
    • Journal of Korea Foundry Society
    • /
    • v.29 no.2
    • /
    • pp.59-63
    • /
    • 2009
  • Effects of Ti on damping capacity and mechanical properties are investigated in hot rolled Fe-17%Mn alloy. The existing damping alloy with Fe-Mn binary system was limited the use by high production cost, however in case of using scrap iron instead of pure iron although the content of carbon is higher it is possible to be applied wider field especially construction items because the production cost is lower. However, the excellent specific damping capacity is dropped due to the high content of carbon, we developed advanced type of damping alloy included Ti. TiC is formed with added Ti and it holds the specific damping capacity similar to existing damping alloy. The effect of Ti on damping capacity is found to be beneficial in carbon-containing alloy, which is attributed to the depletion of carbon solute due to the formation of TiC.

Sensorless Active Damping Method for an LCL Filter in Grid-Connected Parallel Inverters for Battery Energy Storage Systems

  • Sung, Won-Yong;Ahn, Hyo Min;Ahn, Jung-Hoon;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.280-286
    • /
    • 2018
  • A sensorless active damping scheme for LCL filters in grid-connected parallel inverters for battery energy storage systems is proposed. This damping method is superior to the conventional notch filter and virtual damping methods with respect to robustness against the variation of the resonance of the filter and unnecessary additional current sensors. The theoretical analysis of the proposed damping method is explained in detail, along with the characteristic comparison to the conventional active damping methods. The performance verification of the proposed sensorless active damping method shows that its performance is comparable to that of the conventional virtual damping method, even without additional current sensors. Finally, simulation and experimental results are provided to examine the overall characteristics of the proposed method.

Model Test for Heave Motion Reduction of a Circular Cylinder by a Damping Plate (감쇠판에 의한 원기둥의 상하운동 저감 모형시험)

  • Koh, Hyeok-Jun;Kim, Jeong-Rok;Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.76-82
    • /
    • 2013
  • Motion reduction of an offshore structure at resonant frequency is essential for avoiding critical damage to the topside and mooring system. A damping plate has a distinct advantage in reducing the motion of a floating structure by increasing the added mass and the damping coefficient. In this study, the heave motion responses of a circular cylinder with an impermeable and a permeable damping plate attached at the bottom of the cylinder were investigated thru a model test. The viscous damping coefficients for various combinations of porosity were obtained from a free-decay test by determining the ratio between any pair of successive amplitudes. Maximum energy dissipation occurred at a porous plate with a porosity P = 0.1008. Experimental results for regular and irregular waves were compared with an analytical solution by Cho (2011). The measured heave RAO and spectrum reasonably followed the trends of the predicted values. A significant motion reduction at resonant frequency was pronounced and the heaving-motion energy calculated by the integration of the area under the heave motion spectrum was reduced by more than 75% by the damping plate. However, additional energy dissipation by eddies of strong vorticity and flow separation inside a porous damping plate was not found in the present experiments.

Coordinated Control of TCSC and SVC for System Damping Enhancement

  • So Ping Lam;Chu Yun Chung;Yu Tao
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.spc2
    • /
    • pp.322-333
    • /
    • 2005
  • This paper proposes a combination of the Thyristor Controlled Series Capacitor (TCSC) and Static Var Compensator (SVC) installation for enhancing the damping performance of a power system. The developed scheme employs a damping controller which coordinates measurement signals with control signals to control the TCSC and SVC. The coordinated control method is based on the application of projective controls. Controller performance over a range of operating conditions is investigated through simulation studies on a single-machine infinite-bus power system. The linear analysis and nonlinear simulation results show that the proposed controller can significantly improve the damping performance of the power system and hence, increase its power transfer capabilities. In this paper, a current injection model of TCSC is developed and incorporated in the transmission system model. By using equivalent injected currents at terminal buses to simulate a TCSC no modification of the bus admittance matrix is required at each iteration.