• Title/Summary/Keyword: Damping Rate

Search Result 255, Processing Time 0.029 seconds

Development of Turbo Expanders with Hydrostatic Bearings for Hydrogen Liquefaction Plants (정압 베어링을 적용한 수소 액화 공정용 터보 팽창기 개발)

  • Lee, Donghyun;Kim, Byungock;Park, Mooryong;Lim, Hyungsoo
    • Tribology and Lubricants
    • /
    • v.37 no.3
    • /
    • pp.91-98
    • /
    • 2021
  • This paper presents a hydrostatic bearing design and rotordynamic analysis of a turbo expander for a hydrogen liquefaction plant. Th~e turbo expander includes the turbine and compressor wheel assembled to a shaft supported by two hydrostatic radial and thrust bearings. The rated speed is 75,000 rpm and the rated power is 6 kW. For the bearing operation, we use pressurized air at 8.5 bar as the lubricant that is supplied to the bearing through the orifice restrictor. We calculate the bearing stiffness and flow rate for various gauge pressure ratios and select the orifice diameter providing the maximum bearing stiffness. Additionally, we conduct a rotordynamic analysis based on the calculated bearing stiffness and damping considering design parameters of the turbo expander. The predicted Cambell diagram indicates that there are two critical speeds under the rated speed and there exists a sufficient separation margin for the rated speed. In addition, the predicted rotor vibration is under 1 ㎛ at the rated speed. We conduct the operating test of the turbo expander in the test rig. For the operation, we supply pressurized air to the turbine and monitor the shaft vibration during the test. The test results show that there are two critical speeds under the rated speed, and the shaft vibration is controlled under 2.5 ㎛.

E-Isolation : High-performance Dynamic Testing Installation for Seismic Isolation Bearings and Damping Devices

  • Yoshikazu Takahashi;Toru Takeuchi;Shoichi Kishiki;Yozo Shinozaki;Masako Yoneda;Koichi Kajiwara;Akira Wada
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.1
    • /
    • pp.93-105
    • /
    • 2023
  • Seismic isolation and vibration control techniques have been developed and put into practical use by challenging researchers and engineers worldwide since the latter half of the 20th century, and after more than 40 years, they are now used in thousands of buildings, private residences, highways in many seismic areas in the world. Seismic isolation and vibration control structures can keep the structures undamaged even in a major earthquake and realize continuous occupancy. This performance has come to be recognized not only by engineers but also by ordinary people, becoming indispensable for the formation of a resilient society. However, the dynamic characteristics of seismically isolated bearings, the key elements, are highly dependent on the size effect and rate-of-loading, especially under extreme loading conditions. Therefore, confirming the actual properties and performance of these bearings with full-scale specimens under prescribed dynamic loading protocols is essential. The number of testing facilities with such capacity is still limited and even though the existing labs in the US, China, Taiwan, Italy, etc. are conducting these tests, their dynamic loading test setups are subjected to friction generated by the large vertical loads and inertial force of the heavy table which affect the accuracy of measured forces. To solve this problem, the authors have proposed a direct reaction force measuring system that can eliminate the effects of friction and inertia forces, and a seismic isolation testing facility with the proposed system (E-isolation) will be completed on March 2023 in Japan. This test facility is designed to conduct not only dynamic loading tests of seismic isolation bearings and dampers but also to perform hybrid simulations of seismically isolated structures. In this paper, design details and the realization of this system into an actual dynamic testing facility are presented and the outcomes are discussed.

The Effect of Activated Ion Calcium for Production of Panax ginseng Seedlings in Paddy Field (논 인삼 우량묘 생산을 위한 활성이온칼슘 처리효과)

  • Kim, Dong-Won;Kim, Jong-Yeob;You, Dong-Hyun;Kim, Chang-Su;Kim, Hee-Jun;Park, Jong-Suk;Kim, Jeong-Man;Lee, Kang-Soo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.2
    • /
    • pp.124-128
    • /
    • 2012
  • When ginseng seedlings are cultured in paddy fields, quality degradation and yield reduction are induced by severe plant loss with chlorosis on leaves occurred physiological disorder by excessive salt and poor drainage, rusty-root occurrence, and root rot etc. Accordingly, in order to solve these problems, this study was performed to investigate the treatment method, concentrations and time of activated ion calcium as environment-friendly agricultural materials. Activated ion calcium is an enriched and purified water-soluble mineral calcium component for absorbing quickly into plant as a highly functional calcium and it is an alkaline calcium of 37% (370 $m{\ell}$/1 ${\ell}$) concentration with pH 13. Treatment method was that ginseng seeds were sown after removing water in the shade after seed immersion for 1 minute with active ion calcium of 20-fold diluted solution, and then irrigated $4{\ell}$ per 3.3 $m^2$ with 200-fold, 400-fold, and 600-fold diluted solution before emergence on late March, and supplied 1 time on leaves with 500-fold diluted solution in June and July respectively. The disease rate by treatment of activated ion calcium was that on the treatment of soil irrigated with 200-fold diluted solution compared to non-treated soil, damping-off was 33%, anthracnose was 100% reduced and the occurrence rate of rusty-root was 30% reduced. In addition, when active ion calcium of 200-fold diluted solution were soil irrigated, first and second grade ginseng were respectively 26% and 22% produced more, compared with control.

Changes in the Organic Compound Contents of the Pear Rootstocks Pyrus calleryana and Pyrus betulaefolia Affected by Excessive Soil Moisture (토양 과습처리에 의한 배 대목 Pyrus calleryana 와 Pyrus betulaefolia 집단의 유기물 함량 변화)

  • Won, KyungHo;Kim, Yoon-Kyeong;Ma, Kyeong-Bok;Shin, Il-Sheob;Lee, Ug-Yong;Lee, Byul-Ha-Na;Choi, Jin-Ho;Lee, In-Bok;Kim, Myung-Su
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.3
    • /
    • pp.175-183
    • /
    • 2016
  • BACKGROUND: There's a long rainy season during the Summer in Northeast Asia, including Korea. Heavy rainfall during this season causes harm to tree's root, and damped injury in the pear has been continuously reported. Pear Research Institute is breeding damp resistant rootstocks and investigating their mechanisms to relieve damped damages in the pear.METHODS AND RESULTS: Seedlings of Pyrus betulaefolia and P. calleryana were divided into two groups: control and damped, respectively. Damped group was treated by constant irrigation for 77 days and control group was maintained to keep the soil moisture pressure between 0 and -10 kPa. After the treatment, we analysed trees' growth rate, chlorophyll content, amino acids and total phenolic compounds. As a result, P. betulaefolia was sensitive to damped treatment while P. calleryana did not have significant differences between the control and damped treatment. It was observed that total contents for phenolic compounds were dramatically increased in P. betulaefolia while trees' growth rate, chlorophyll b and general amino acid contents were lowered by damping treatment.CONCLUSION: In some pear cultivars, growth habit is suppressed by damped damage. Pyrus calleryana displayed tolerances to damped damage in growth rate and some organic compound contents compared to P. betulaefolia. So we recommend to exploit P. calleryana as a pear rootstock rather than using P. betulaefolia.

Dynamic Response of Plate Structure Subject to the Characteristics of Explosion Load Profiles - Part A: Analysis for the Explosion Load Characteristics and the Effect of Explosion Loading Rate on Structural Response - (폭발하중 이력 특성에 따른 판 구조물의 동적응답 평가 - Part A: 폭발하중 특징 및 재하속도의 영향 분석 -)

  • Kang, Ki-Yeob;Choi, Kwang-Ho;Ryu, YongHee;Choi, JaeWoong;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.187-195
    • /
    • 2015
  • The gas explosions in offshore installations are known to be very severe according to its geometry and environmental conditions such as leak locations and wind directions, and a dynamic response of structures due to blast loads depends on the load profile. Therefore, a parametric study has to be conducted to investigate the effects of the dynamic response of structural members subjected to various types of load shapes. To do so, a series of CFD analyses was performed using a full-scale FPSO topside model including detail parts of pipes and equipments, and the time history data of the blast loads at monitor points and panels were obtained by the analyses. In this paper, we focus on a structural dynamic response subjected to blast loads changing the magnitude of positive/negative phase pressure and time duration. From the results of linear/nonlinear transient analyses using single degree of freedom(SDOF) and multi-degree-of freedom(MDOF) systems, it was observed that dynamic responses of structures were significantly influenced by the magnitude of positive and negative phase pressures and negative time duration.

Studies on Partial Revegetation of Rock Cut-Slope by Direct Seeding of Woody Species Seeds (수목종자 직파에 의한 암반절개사면 부분녹화)

  • Hong, Sung-Gak;Kim, Jong-Jin;Lee, Duck-Soo;Lee, Ki-Cheol;Yoon, Teok-Seong
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.3
    • /
    • pp.265-271
    • /
    • 1999
  • The direct seeding of seeds or the pellets of three native tree species (Pinus densiflora, Parthenocissus tricuspidata and Rhus chinensis) was tried on the rock cut-slope revegetation bed established by construction of mechanical excavation or erosion break with artificially enriched soil medium. The seed $pellet(1{\sim}2\;cubic\;cm)$ made by coating seeds(treated with proper previous pregermination treatments) with the mixture of peatmoss, clay, chemical absorbant(3.5:1.0:0.2, v/v) showed about twice better percent germination than the control seeds. The percent germination and the survival rate of the germinated seedlings were higher in the spring direct seeding than the summer or the fall. The soil medium containing the compost showed extremely low percent $germination(0{\sim}3%)$ which presumably attributed to the compost inducing damping-off disease. The survival rates were affected mainly by shading of natural herbaceous vegetation invading from outside to the revegetation bed. The planting of two year old container seedlings of P. densiflora and P. tricuspidata on August 2, 1998 was successful indicating that it could be an alternative revegetation method in case the summer direct seeding is unfavorable.

  • PDF

A Study on HAUSAT-2 Momentum Wheel Start-up Method (초소형위성 HAUSAT-2 모멘텀 휠 Start-up 방안 연구)

  • Lee, Byung-Hoon;Kim, Soo-Jung;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.73-80
    • /
    • 2005
  • This paper addresses a newly proposed start-up method of the HAUSAT-2 momentum wheel. The HAUSAT-2 is a 25kg class nanosatellite which is stabilized to earth pointing by 3-axis active control method. A momentum wheel performs two functions. It provides a pitch-axis momentum bias while measuring satellite pitch and roll attitude. Pitch control is accomplished in the conventional way by driving a momentum wheel in response to pitch attitude errors. Precession control and nutation damping are provided by driving the pitch axis magnetic torquer. A momentum wheel is nominally spinning at a particular rate and changes speed. This simulation study investigates the feasibility and performance of a proposed strategy for starting-up the wheel. A proposed strategy to start-up the wheel shows that a pitch momentum wheel can be successfully started-up to its nominal speed from rest and be stabilized to nadir pointing.

Vibration Reduction Effect and Structural Behavior Analysis for Column Member Reinforced with Vibration Non-transmissible Material (진동절연재로 보강된 기둥부재의 진동저감효과 및 구조적 거동분석)

  • Kim, Jin-Ho;Yi, Na-Hyun;Hur, Jin-Ho;Kim, Hee-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.94-103
    • /
    • 2016
  • For elevated railway station on which track is connected with superstructure of station, structural vibration level and structure-borne-noise level has exceeded the reference level due to structural characteristics which transmits vibration directly. Therefore, existing elevated railway station is in need of economical and effective vibration reduction method which enable train service without interruption. In this study, structural vibration non-transmissible system which is applied to vibroisolating material for column member is developed to reduce vibration. That system is cut covering material of the column section using water-jet method and is installed with vibroisolating material on cut section. To verify vibration reduction effect and structural performance for structural vibration non-transmissible system, impact hammer test and cyclic lateral load test are performed for 1/4 scale test specimens. It is observed that natural period which means vibration response characteristics is shifted, and damping ratio is increased about 15~30% which means that system is effective to reduce structural vibration through vibration test. Also load-displacement relation and stiffness change rate of the columns are examined, and it is shown that ductility and energy dissipation capacity is increased. From test results, it is found that vibration non-transmissible system which is applied to column member enable to maintains structural function.

Control of Bending Behavior of Simple Beams Using CTMD (CTMD의 질량비에 따른 단순보의 휨거동 제어효과)

  • Heo, Gwang-Hee;Seo, Sang-Gu;Kim, Chung-Gil;Jeon, Seung-Gon;Kim, Min-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.12-18
    • /
    • 2021
  • The purpose of this study is to effectively mitigate the bending displacement that occurs in the bridge due to forced vibration. We developed CTMD (Combine Tuned Mass Damper) that combines the relationship between spring and mass to control the bending behavior of simple beams. The experiment was conducted to confirm the control effect according to the change in the mass ratio of the developed CTMD. The developed CTMD is designed and manufactured so that the mass ratio can be adjusted according to the characteristics of the bridge. The maximum load of the spring applied to CTMD was fixed at 33.15 N. In order to evaluate the performance of the developed CTMD, a simple beam composed of hinges and rollers as boundary conditions was fabricated. In the experimental method, a CTMD was installed in the center of a simple beam and the deflection displacement according to the mass ratio was measured. The shaking condition was shaken at 3 Hz to induce the maximum bending behavior of the simple beam. As a result of the experiment, it was confirmed that when the optimal mass ratio was 2.1, the damping rate of the bending behavior displacement was about 71.2 %, indicating the best control effect.

Estimation of Frequency of Storm Surge Heights on the West and South Coasts of Korea Using Synthesized Typhoons (확률론적 합성태풍을 이용한 서남해안 빈도 해일고 산정)

  • Kim, HyeonJeong;Suh, SeungWon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.241-252
    • /
    • 2019
  • To choose appropriate countermeasures against potential coastal disaster damages caused by a storm surge, it is necessary to estimate the frequency of storm surge heights estimation. As the coastal populations size in the past was small, the tropical cyclone risk model (TCRM) was used to generate 176,689 synthetic typhoons. In simulation, historical paths and central pressures were incorporated as a probability density function. Moreover, to consider the typhoon characteristics that resurfaced or decayed after landfall on the southeast coast of China, incorporated the shift angle of the historical typhoon as a function of the probability density function and applied it as a damping parameter. Thus, the passing rate of typhoons moving from the southeast coast of China to the south coast has improved. The characteristics of the typhoon were analyzed from the historical typhoon information using correlations between the central pressure, maximum wind speed ($V_{max}$) and the maximum wind speed radius ($R_{max}$); it was then applied to synthetic typhoons. The storm surges were calculated using the ADCIRC model, considering both tidal and synthetic typhoons using automated Perl script. The storm surges caused by the probabilistic synthetic typhoons appear similar to the recorded storm surges, therefore this proposed scheme can be applied to the storm surge simulations. Based on these results, extreme values were calculated using the Generalized Extreme Value (GEV) method, and as a result, the 100-year return period storm surge was found to be satisfactory compared with the calculated empirical simulation value. The method proposed in this study can be applied to estimate the frequency of storm surges in coastal areas.