DOI QR코드

DOI QR Code

Estimation of Frequency of Storm Surge Heights on the West and South Coasts of Korea Using Synthesized Typhoons

확률론적 합성태풍을 이용한 서남해안 빈도 해일고 산정

  • Kim, HyeonJeong (Department of Ocean Science & Engineering, Kunsan National University) ;
  • Suh, SeungWon (Department of Coastal Construction Engineering, Kunsan National University)
  • 김현정 (군산대학교 대학원 해양산업공학과) ;
  • 서승원 (군산대학교 해양건설공학과)
  • Received : 2019.07.31
  • Accepted : 2019.09.08
  • Published : 2019.10.31

Abstract

To choose appropriate countermeasures against potential coastal disaster damages caused by a storm surge, it is necessary to estimate the frequency of storm surge heights estimation. As the coastal populations size in the past was small, the tropical cyclone risk model (TCRM) was used to generate 176,689 synthetic typhoons. In simulation, historical paths and central pressures were incorporated as a probability density function. Moreover, to consider the typhoon characteristics that resurfaced or decayed after landfall on the southeast coast of China, incorporated the shift angle of the historical typhoon as a function of the probability density function and applied it as a damping parameter. Thus, the passing rate of typhoons moving from the southeast coast of China to the south coast has improved. The characteristics of the typhoon were analyzed from the historical typhoon information using correlations between the central pressure, maximum wind speed ($V_{max}$) and the maximum wind speed radius ($R_{max}$); it was then applied to synthetic typhoons. The storm surges were calculated using the ADCIRC model, considering both tidal and synthetic typhoons using automated Perl script. The storm surges caused by the probabilistic synthetic typhoons appear similar to the recorded storm surges, therefore this proposed scheme can be applied to the storm surge simulations. Based on these results, extreme values were calculated using the Generalized Extreme Value (GEV) method, and as a result, the 100-year return period storm surge was found to be satisfactory compared with the calculated empirical simulation value. The method proposed in this study can be applied to estimate the frequency of storm surges in coastal areas.

폭풍으로 인한 연안재해 피해에 대한 적절한 대응책을 수립하기 위해서는 빈도 해일고 산정에 대한 연구가 필요하다. 과거에 관측된 태풍은 모집단 수가 적기 때문에 tropical cyclone risk model(TCRM)을 이용해 역사태풍의 이동경로와 중심기압을 확률밀도함수로 추정하여 확률적으로 발생하는 176,689개의 합성태풍을 생성하였다. 아울러 중국 남동부 연안으로 상륙한 후 재부상 하거나 소멸되는 태풍 특성을 합성태풍에 고려하기 위해 역사태풍의 이동각도를 확률밀도함수로 추정하고 감쇠 매개변수와 함께 적용하여 중국 남동부 연안에서 서남해안으로 이동하는 태풍의 통과율이 개선되었다. 태풍속성은 역사태풍으로부터 분석하였으며 중심기압과 최대풍속($V_{max}$), 최대풍속 반경($R_{max}$)의 상관관계식을 산정하여 합성태풍에 적용하였다. 해일고는 ADCIRC 모형을 이용해 조석과 합성태풍을 고려하여 산정하였으며 Perl script로 자동화하였다. 확률적으로 발생시킨 합성태풍에 의한 해일고는 실제 자연현상에서 발생하는 해일고와 유사하게 나타나기 때문에 빈도 해일고를 산정할 수 있다. 따라서 일반화된 극치분포(Generalized Extreme Value, GEV)의 모수를 추정하여 극치 해일고를 산정하였으며, 100년 빈도 해일고는 경험모의기법으로 산정한 빈도 해일고와 비교하여 만족스러운 결과가 도출되었다. 본 연구에서 제안한 방법은 일반 해역에서 빈도 해일고 산정시 활용될 수 있다.

Keywords

References

  1. Blanton, B., McGee, J., Fleming, J., Kaiser, C., Kaiser, H., Lander, H., Luettich, R.A., Dresback, K. and Kolar, R. (2012). Urgent computing of storm surge for North Carolina's coast. Procedia Comput. Sci., 9, 1677-1686. https://doi.org/10.1016/j.procs.2012.04.185
  2. Bruneau, N., Grieser, J., Loridan, T., Bellone, E. and Khare, S. (2017). The impact of extra-tropical transitioning on storm surge and waves in catastrophe risk modelling: application to the Japanese coastline. Natural Hazards, 85(2), 649-667. https://doi.org/10.1007/s11069-016-2596-2
  3. Fleming, J.G., Fulcher, C.W., Luettich, R.A., Estrade, B.D., Allen, G.D. and Winer, H.S. (2008). A real time storm surge forecasting system using ADCIRC. Estuar. and Coast. Modeling, 2007, 893-912.
  4. Gilleland, E. and Katz, R.W. (2016). Extremes 2.0: an extreme value analysis package in R. J. Stat. Softw., 72(8), 1-39.
  5. Hagen, S.C., Westerink, J.J., Kolar, R.L. and Horstmann, O. (2000). Two-dimensional, unstructured mesh generation for tidal models. Int. J. Numer. Methods Fluids, 35, 669-686. https://doi.org/10.1002/1097-0363(20010330)35:6<669::AID-FLD108>3.0.CO;2-#
  6. Hall, T.M. and Jewson, S. (2007). Statistical modelling of North Atlantic tropical cyclone tracks. Tellus A, 59(4), 486-498. https://doi.org/10.1111/j.1600-0870.2007.00240.x
  7. Holland, G.J. (1980). An Analytical Model of the Wind and Pressure Profiles in Hurricanes. Mon. Weather Rev., 108, 1212-1218. https://doi.org/10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2
  8. Jones, S.C., Harr, P.A., Abraham, J., Bosart, L.F., Bowyer, P.J., Evans, J.L., Hanley, D.E., Hanstrum, B.N., Hart R.E., Lalaurette, F., Sinclair M.R., Smith R.K. and Thorncroft C. (2003). The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Weather Forecast, 18(6), 1052-1092. https://doi.org/10.1175/1520-0434(2003)018<1052:TETOTC>2.0.CO;2
  9. Kang, J.W., Kim, Y.S., Kwon, S.D. and Choun, Y.S. (2016). Generation of a standard typhoon using for surge simulation consistent with wind in terms of return period. Journal of Korean Society of Coastal and Ocean Engineers, 28(1), 53-62. https://doi.org/10.9765/KSCOE.2016.28.1.53
  10. Kang, J.W. and Kim, Y.S. (2019). Typhoon-surge characteristics and the highest high water levels at the Western coast. Journal of Korean Society of Coastal and Ocean Engineers, 31(2), 50-61. https://doi.org/10.9765/KSCOE.2019.31.2.50
  11. Kim, H.J. and Suh, S.W. (2016). Probabilistic coastal storm surge analyses using synthesized tracks based on historical typhoon parameters. J. Coast. Res., 75(sp1), 1132-1136. https://doi.org/10.2112/SI75-227.1
  12. Kim, T.J., Kwon, H.H. and Seok, S.Y. (2019). Frequency analysis of storm surge using Poisson-Generalized Pareto distribution. J. Korea Water Resour. Assoc., 52(3), 173-185.
  13. KORDI (2010). Development of Storm Surge and Tsunami Prediction System and Estimation of Design Water Level for major ports in Korea. 362.
  14. Kossin, J.P., Emanuel, K.A. and Vecchi, G.A. (2014). The Poleward Migration of the Location of Tropical Cyclone Maximum Intensity. Nature, 509, 349-252. https://doi.org/10.1038/nature13278
  15. Lin, N., Emanuel, K.A., Smith, J.A. and Vanmarcke, E. (2010). Risk assessment of hurricane storm surge for New York City. J. Geophys. Res., 115, D18121. https://doi.org/10.1029/2009JD013630
  16. Luettich, R.A., Westerink, J.J. and Scheffner, N.W. (1992). ADCIRC : An Advanced Three-Dimensional Circulation Model for Shelves Coasts and Estuaries Report 1: Theory and Methodology of ADCIRC-2DDI and ADCIRC-3DL. Vicksburg, MS: US Army Corps of Engineers Waterways Experiment Station, Dredging Research Program Technical Report DRP-92-6, 141.
  17. Lyard, F., Lefevre, F., Letellier, T. and Francis, O. (2006). Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn., 56, 394-415. https://doi.org/10.1007/s10236-006-0086-x
  18. McDonald, C.L. (2006). Automatic, unstructured mesh generation for 2D, shelf-based tidal models. MS thesis, Brigham Young University.
  19. Needham, H.F., Keim, B.D., Sathiaraj, D. and Shafer, M. (2012). Storm surge return periods for the United States Gulf Coast. Advances in Hurricane Engineering, 715-740.
  20. Suh, K.D., Yang, Y.C., Jun, K.C. and Lee, D.Y. (2009). Extreme sea level analysis in coastal waters around Korean peninsula using empirical simulation technique. Journal of Korean Society of Coastal and Ocean Engineers, 21(3), 254-265.
  21. Suh, S.W. and Kim, H.J. (2011). Precise tidal simulation on the Yellow sea and extended to north western pacific sea. Journal of Korean Society of Coastal and Ocean Engineers, 23(3), 205-214. https://doi.org/10.9765/KSCOE.2011.23.3.205
  22. Suh, S.W. and Kim, H.J. (2012). Typhoon surge simulation on the West coast incorporating asymmetric vortex and wave model on a fine finite element grid. Journal of Korean Society of Coastal and Ocean Engineers, 24(3), 166-178. https://doi.org/10.9765/KSCOE.2012.24.3.166
  23. Suh, S.W., Lee, H.Y., Kim, H.J. and Fleming, J.G. (2015). An efficient early warning system for typhoon storm surge based on time-varying advisories by coupled ADCIRC and SWAN. Ocean Dyn., 65(5), 617-646. https://doi.org/10.1007/s10236-015-0820-3
  24. Suzuki, T.S., Shibaki, H. and Suzuyama, K. (2014). Prediction of inundation disaster due to storm surge under global warming. Proc. of 34th Conference on Coast. Engineering, Seoul, Korea.
  25. Vickery, P.J. and Twisdale, L.A. (1995). Wind-field and filling models for hurricane wind-speed predictions. J. Struct. Eng., 121(11), 1700-1709. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:11(1700)
  26. Vickery, P.J., Skerlj, P.F. and Twisdale, L.A. (2000). Simulation of hurricane risk in the U.S. using empirical track model. J. Struct. Eng., 126(10), 1222-1237. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1222)
  27. Vickery, P.J. (2005). Simple empirical models for estimating the increase in the central pressure of tropical cyclones after landfall along the coastline of the United States. J. of Appl. Meteorology, 44(12), 1807-1826. https://doi.org/10.1175/JAM2310.1
  28. Vickery, P.J., Masters, F.J., Powell, M.D. and Wadhera, D. (2009). Hurricane hazard modeling: The past, present, and future. J. of Wind Engineering and Industrial Aerodynamics, 97(7), 392-405. https://doi.org/10.1016/j.jweia.2009.05.005
  29. Vickery, P.J. and Wadhera, D. (2009). Statistical models of Holland pressure profile parameter and radius to maximum winds of hurricanes from flight-level pressure and H*Wind data. J. Appl. Meteorol. Climatol., 47(10), 2497-2517. https://doi.org/10.1175/2008JAMC1837.1
  30. Wikipedia (2019). https://en.wikipedia.org/wiki/Typhoon_Haiyan (last date accessed: 16 Jun 2019).
  31. Willoughby, H.E., Darling, R.W.R. and Rahn, M.E. (2006). Parametric representation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles. Mon. Weather Rev., 134(4), 1102-1120. https://doi.org/10.1175/MWR3106.1
  32. Xiao, Y.F., Duan, Z.D., Xiao, Y.Q., Ou, J.P., Chang, L. and Li, Q.S. (2011). Typhoon wind hazard analysis for southeast China coastal regions. Structural Saf., 33(4), 286-295. https://doi.org/10.1016/j.strusafe.2011.04.003
  33. Zhao, H., Han, G., Zhang, S. and Wang, D. (2013). Two phytoplankton blooms near Luzon Strait generated by lingering Typhoon Parma. J. Geophys. Res. Biogeosci., 118(2), 412-421. https://doi.org/10.1002/jgrg.20041