• Title/Summary/Keyword: Damping Rate

Search Result 255, Processing Time 0.022 seconds

Numerical investigation of blade tip vortex cavitation noise using Reynolds-averaged Navier-Stokes simulation and bubble dynamics model (Reynolds-averaged Navier-Stokes 해석과 기포동역학 모델을 이용한 날개 끝 와류 공동 소음의 수치적 고찰)

  • Ku, Garam;Cheong, Cheolung;Seol, Hanshin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.2
    • /
    • pp.77-86
    • /
    • 2020
  • In this study, the Eulerian/Lagrangian one-way coupling method is proposed to predict flow noise due to Blade-Tip Vortex Cavitation (BTVC). The proposed method consists of four sequential steps: flow field simulation using Computational Fluid Dynamics (CFD) techniques, reconstruction of wing-tip vortex using vortex model, generation of BTVC using bubble dynamics model and acoustic wave prediction using the acoustic analogy. Because the CFD prediction of tip vortex structure generally suffers from severe under-prediction of its strength along the steamwise direction due to the intrinsic numerical damping of CFD schemes and excessive turbulence intensity, the wing-tip vortex along the freestream direction is regenerated by using the vortex modeling. Then, the bubble dynamics model based on the Rayleigh-Plesset equation was employed to simulate the generation and variation of BTVC. Finally, the flow noise due to BTVC is predicted by modeling each of spherical bubbles as a monople source whose strength is proportional to the rate of time-variation of bubble volume. The validity of the proposed numerical methods is confirmed by comparing the predicted results with the measured data.

Measurement of Viscoelastic Constants from Multiple Phase MR Elastography Fitting Elastic Wave (탄성파를 적용한 다중 위상 MR Elastography로부터의 점탄성 정수의 측정)

  • Jung, Nam-Chae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.3
    • /
    • pp.119-129
    • /
    • 2012
  • In the medical field, the hardening of tissues is one of important informations used in diagnosis or understanding progress of disease, a quantitative measuring method of hardening is important for objective diagnosis. It has been proposed MRE(Magnetic Resonance Elastography) method that measures an index of hardening, viscoelastic properties in a noninvasive. Because the S/N ratio of MRE images go down when measuring viscoelastic properties from local wavelength and local damping factor of a propagating wave in MRE method, methods using multiple phase MRE images have been examined to decrease the effect of noise. We propose a method measuring viscoelastic properties after Fitting a function for multiple phase MRE images in this research. This proposed method has a advantage to set up arbitrarily the variation rate of a space direction of viscoelastic properties or the spatial resolution of measuring values according to changing of the noise included in images, though it applies viscoelastic wave for multiple phase MRE images. We confirmed the effectiveness of a proposed method by experiment using simulation images and experiment using silicone-gel phantom.

Creep characteristic of Mg alloy at high temperature (고온에서 마그네슘 합금의 크리이프 특성)

  • An, Jung-O;Park, Kyong-Do;Kwak, Jae-Seob;Kang, Dae-Min
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.39-44
    • /
    • 2008
  • Magnesium alloys have given high attention to the industry of light-weigh as automobile and electronics with aluminium, titanium and composite alloys due to their high strength, low specific density and good damping characteristics. But the magnesium contained structures under high temperature have the problems related to creep deformation and rupture life, which is a reason of developing the new material against creep deformation to use them safely. The purpose of this study is to predict the creep deformation mechanism and rupture time of AZ31 magnesium alloy. For this, creep tests of AZ31 magnesium alloy were done under constant creep load and temperature with the equipment including automatic temperature controller with acquisition computer. The apparent activation energy Qc and the applied stress exponent n, rupture life have been determined during creep of AZ31 Mg alloy over the temperature range of $150^{\circ}C$ to $300^{\circ}C$. In order to investigate the creep behavior. Constant load creep tests were carried out in the equipment including automatic temperature controller, whose data are sent to computer. At around the temperature of $150^{\circ}C{\sim}300^{\circ}C$ the creep behavior obeyed a simple power-law relating steady state creep rate to applied stress and the activation energy for the creep deformation was nearly equal and a little low, respectively, to that of the self diffusion of Mg alloy.

  • PDF

Numerical simulations of the vertical kink oscillations of the solar coronal loop with field aligned flows

  • Pandey, V.S.;Magara, T.;Lee, D.H.;Selwa, M.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.103.1-103.1
    • /
    • 2011
  • Recent observations by Hinode show weakly-attenuated coronal loop oscillations in the presence of background flow (Ofman & Wang 2008, A&A, 482, L9). We study the vertical kink oscillations in solar coronal loops, considering field aligned flows inside the loops as well as surrounding the loops environment. The two dimensional numerical model of straight slab is used to explore the excitation and attenuation of the impulsively triggered fast magnetosonic standing kink waves. A full set of time dependent ideal magnetohydrodynamics equations is solved numerically taking into account the value of flow of the order of observed flows detected by SOT/Hinode. We find that relaxing the assumption of the limited flows within the loops enhances the damping rate of the fundamental mode of the standing kink waves by 2 - 3 % as compared to flow pattern which is basically localized within the loops. We further notice that extending the flow pattern beyond the loop thickness also enhances the strength of the shock associated with slow magnetoacoustic waves, recognized as an addition feature detected in the numerical simulation. The wider out-flow pattern destroys the oscillation patterns early as compared to narrower flow pattern, in other words we can say that it affects the durability of the oscillation. However, for the typical coronal loops parameters we find that the observed durability periods of the SOT/Hinode observation can be achieved with an out-flow Gaussian patterns for which half-width is not greater than factor 2.0 of the loop-half-width. explain a possible relation between electric current structure and sigmoid observed in a preflare phase.

  • PDF

3D FE Model with FEA Factors and Plastic Shots for Residual Stress Under Oblique Shot Peening (경사충돌 피닝잔류응력에 미치는 해석인자의 영향 및 소성숏이 포함된 3차원 유한요소모델)

  • Lee, Bae-Hwa;Kim, Tae-Hyung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.323-331
    • /
    • 2010
  • In this study, we propose a 3D finite element (FE) model for the residual stress under oblique shot peening. Using the FE model for an oblique impact, we examine the effects of factors on the residual stress such as the Rayleigh damping in the material, dynamic friction, and the rate dependency of the material and systematically integrate the effects. The plastic deformation of the shot is also emphasized. Then, the FE model is used to study oblique multi-impacts. The results obtained using the FE model are compared with experimental x-ray diffraction (XRD) results; in contrast to the rigid and elastic shots, plastic shots are found to produce residual stresses similar to that shown in the XRD results. Thus, the 3D FE models with integrated factors and plastically deformable shots are validated. The proposed model will serve as a basis for the 3D FE model for multi-impacts with different impact angles to simulate the actual phenomenon of shot peening.

Rotordynamic Instabilities Caused by the Fluid Force Moments on the Backshroud of a Francis Turbine Runner

  • Song, Bingwei;Horiguchi, Hironori;Ma, Zhenyue;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.67-79
    • /
    • 2010
  • Severe flexural vibration of the rotor shaft of a Francis turbine runner was experienced in the past. It was shown that the vibration was caused by the fluid forces and moments on the backshroud of the runner associated with the leakage flow through the back chamber. The aim of the present paper is to study the self-excited rotor vibration caused by the fluid force moments on the backshroud of a Francis turbine runner. The rotor vibration includes two fundamental motions, one is a whirling motion which only has a linear displacement and the other is a precession motion which only has an angular displacement. Accordingly, two types of fluid force moment are exerted on the rotor, the moment due to whirl and the moment due to precession. The main focus of the present paper is to clarify the contribution of each moment to the self-excited vibration of an overhung rotor. The runner was modeled by a disk and the whirl and the precession moments on the backshroud of the runner caused by the leakage flow were evaluated from the results of model tests conducted before. A lumped parameter model of a cantilevered rotor was used for the vibration analysis. By examining the frequency, the damping rate, the amplitude ratio of lateral and angular displacements for the cases with longer and shorter overhung rotor, it was found that the precession moment is more important for smaller overhung rotors and the whirl moment is more important for larger overhung rotors, although both types of moment due to the leakage flow can cause self-excited vibration of an overhung rotor.

Impact of Rhizosphere Competence of Biocontrol Agents upon Diseases Suppression and Plant Growth Promotion

  • Park, Chang-Seuk-
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1994.06a
    • /
    • pp.27-49
    • /
    • 1994
  • Root colonization of biocontrol agents via seed treatment was investigated and a compatible combination, Gliocladium virens G872B and Pseudomonas putida Pf3, in colonizing cucumber rhizosphere was confirmed through the study. Much higher number of fungal and bacterial propagules were detected when two isolates were inoculated together. The presence of Pf3 in root system was greatly helpful to G872B to colonize at root tip. The mechanism of this phenomenon is partially elucidated through the results of in vitro experiments and the observations of scanning electron and fluorescence microscope. Addition of Pf3 cells resulted earlier germination of G872B conidia and increased mycelial growth. And the more number of germinated conidia on seed coat, the more vigorous hypal streching and sporulation on the root surface were observed in coinoculated treatment. The propagules of G872B on the cucumber root when they were challenged against the pathogenic Fusarium oxysporum, were even higher than that of G872B treated alone, and the magnitude of such a difference was getting grater toward the root ip and the population of F. oxysporum on the root was reduced by seed inoculation of G872B. The rhizosphere competence was obviously reflected to disease suppression and plant growth promotion that induced by the given isolate. Green house experiments revealed that the combined treatment provided long-term disease suppression with greater rate and the larger amount of fruit yield than single treatments. Through this study the low temperature growing Pseudomonas fluorescens M45 and MC07 were evaluated to apply them to the winter crops in field or plastic film house. In vitro tests reveal that M45 and MC07 inhibited the mycelial growth of Pythium ultimum, Rhizoctona solani and Phytophthora capsici and enhanced growth of cucumber cotyledon in MS agar. This effect was more pronounced when the bacteria were incubated at 14$^{\circ}C$ than at 27$^{\circ}C$. And disease suppression and plant growth promotion in green house were also superior at low temperature condition. Seed treatment of M45 or soil treatment of MC07 brought successful control of damping-off and enhanced seedling growth of cucumber. The combined treatment of two isolates was more effective than any single treatment.

  • PDF

Hierarchical Simulation for Real-time Cloth Animation and LOD control (실시간 옷감 애니메이션과 LOD 제어를 위한 계층적 시뮬레이션)

  • Kang, Young-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.479-485
    • /
    • 2007
  • In this paper, a hierarchical simulation with an approximate implicit method is proposed in order to efficiently and plausibly animate mass-spring based cloth models. The proposed hierarchical simulation method can generate realistic motion of extremely fine mesh in interactive rate. The proposed technique employs a fast and stable simulation method which approximates the implicit integration. Although the approximate method is efficient, it is extremely inaccurate and shows excessively damped behavior. The hierarchical simulation technique proposed in this paper constructs multi-level mesh structure in order to represent the realistic appearance of cloth model and performs simulation on each level of the mesh with constraints that enforce some of the mass-points of current level to follow the movement of the previous level. This hierarchical method efficiently generates a plausible movement of a cloth model composed of large number of mass points. Moreover, this hierarchical method enables us to generate realistic wrinkles on the cloth, and the wrinkle pattern on the cloth model can be easily controlled because we can specify different contraction resistance force of springs according to their hierarchical level.

Seismic fragility evaluation of arch concrete dams through nonlinear incremental analysis using smeared crack model

  • Moradloo, Javad;Naserasadi, Kiarash;Zamani, Habib
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.747-760
    • /
    • 2018
  • In the present study, a methodology for developing fragilities of arch concrete dams to assess their performance against seismic hazards is introduced. Firstly, the probability risk and fragility curves are presented, followed by implementation and representation of the way this method is used. Amirkabir arch concrete dam was subjected to non-linear dynamic analyses. A modified three dimensional rotating smeared crack model was used to take the nonlinear behavior of mass concrete into account. The proposed model considers major characteristics of mass concrete. These characteristics are pre-softening behavior, softening initiation criteria, fracture energy conservation, suitable damping mechanism and strain rate effect. In the present analysis, complete fluid-structure interaction is included to account for appropriate fluid compressibility and absorptive reservoir boundary conditions. In this study, the Amirkabir arch concrete dam is subjected to a set of 8 three-component earthquakes each scaled to 10 increasing intensity levels. Using proposed nonlinear smeared crack model, nonlinear analysis is performed where the structure is subjected to a large set of scaled and un-scaled ground motions and the maximum responses are extracted for each one and plotted. Based on the results, fragility curves were plotted according to various and possible damages indexes. Discrete damage probabilities were calculated using statistical methods for each considered performance level and incremental nonlinear analysis. Then, fragility curves were constructed based on the lognormal distribution assumption. Two damage indexes were introduced and compared to one another. The results indicate that the dam has a proper stability under earthquake conditions at MCE level. Moreover, displacement damages index is more conservative and impractical in the fragility analysis than tensional damage index.

Numerical simulation in time domain to study cross-flow VIV of catenary riser subject to vessel motion-induced oscillatory current

  • Liu, Kun;Wang, Kunpeng;Wang, Yihui;Li, Yulong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.491-500
    • /
    • 2020
  • The present study proposes a time domain model for the Vortex-induced Vibration (VIV) simulation of a catenary riser under the combination of the current and oscillatory flow induced by vessel motion. In this model, the hydrodynamic force of VIV comprises excitation force, hydrodynamic damping and added mass, which are taken as functions of the non-dimensional frequency and amplitude ratio. The non-dimensional frequency is related with the response frequency, natural frequency, lock-in range and the fluid velocity. The relatively oscillatory flow induced by vessel motion is taken into account in the fluid velocity. Considering that the added mass coefficient and the non-dimensional frequency can affect each other, an iterative analysis is conducted at each time step to update the added mass coefficient and the natural frequency. This model is in detail validated against the published test models. The results show that the model can reasonably reflect the effect of the added mass coefficient on the VIV, and can well predict the riser's VIV under stationary and oscillatory flow induced by vessel motion. Based on the model, this study carries out the VIV simulation of a catenary riser with harmonic vessel motion. By analyzing the bending moment near the touchdown point, it is found that under the combination of the ocean current and oscillatory flow the vessel motion may decrease the VIV response, while increase the excited frequencies. In addition, the decreasing rate of the VIV under vessel surge is larger than that under vessel heave at small vessel motion velocity, while the situation becomes opposite at large vessel motion velocity.