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Abstract 

Severe flexural vibration of the rotor shaft of a Francis turbine runner was experienced in the past. It was shown that 
the vibration was caused by the fluid forces and moments on the backshroud of the runner associated with the leakage 
flow through the back chamber. The aim of the present paper is to study the self-excited rotor vibration caused by the 
fluid force moments on the backshroud of a Francis turbine runner. The rotor vibration includes two fundamental 
motions, one is a whirling motion which only has a linear displacement and the other is a precession motion which only 
has an angular displacement. Accordingly, two types of fluid force moment are exerted on the rotor, the moment due to 
whirl and the moment due to precession. The main focus of the present paper is to clarify the contribution of each 
moment to the self-excited vibration of an overhung rotor. The runner was modeled by a disk and the whirl and the 
precession moments on the backshroud of the runner caused by the leakage flow were evaluated from the results of 
model tests conducted before. A lumped parameter model of a cantilevered rotor was used for the vibration analysis. By 
examining the frequency, the damping rate, the amplitude ratio of lateral and angular displacements for the cases with 
longer and shorter overhung rotor, it was found that the precession moment is more important for smaller overhung 
rotors and the whirl moment is more important for larger overhung rotors, although both types of moment due to the 
leakage flow can cause self-excited vibration of an overhung rotor. 
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1. Introduction 
In turbomachinery, fluid-induced vibrations are typical self-excited vibrations which absorb many prior researchers’ attentions. 

The rotordynamic instability of rotor systems caused by the fluid forces and moments acting on the shroud of the pump impeller 
were studied by many researchers. For the front shroud, the rotordynamic characteristics and the rotordynamic fluid forces caused 
by the leakage flows were examined experimentally [1, 2], and the effect of swirl on the fluid forces was investigated in [3]. For 
the backshroud, the experimental results of fluid moment on a centrifugal impeller shroud in precessing motion were discussed 
based on the bulk flow model to elucidate the fundamental flow mechanism [4]. The flow in backshroud/casing clearance of 
precessing centrifugal impeller was measured in [5]. 

A severe flexural vibration of a rotor shaft of a Francis turbine generator shown in Fig. 1 was experienced when the load 
exceeded a certain value [6, 7]. It was shown that the vibration was self-excited by the fluid forces and moments acting on the 
backshroud of the runner associated with the leakage flow through the back chamber. 

The motion of a rotor can be assorted to two fundamental modes. One is whirling motion which only has a lateral linear 
displacement |ε|, and the other is precession motion which only has an angular displacement |α|. 

Reference [1-3] discussed the rotordynamic instability caused by the rotordynamic fluid forces under whirling motion 
associated with the leakage flow. On the other hand, [4, 5] discussed the instability in precession motion. Since the whirling and 
precessing modes occur simultaneously, Kanemori and Iwatsubo [8, 9] studied the rotordynamic forces and moments on a long 
seal under whirling and precessing vibrations. They provided a complete set of rotordynamic force and moment coefficients 
needed for the vibration analysis. However, further rotordynamic analysis and the effect of the fluid force moments caused by the 
whirling and precession motions on the stability were not specially discussed. 
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In order to study the rotordynamic problem of the Francis turbine runner as reported in [6], the authors have measured the 
rotordynamic force moments on a whirling and precessing disk simulating the backshroud of a Francis turbine runner, respectively 
[10, 11]. In [10], it was shown by a simplified vibration analysis that the moment on the rotor caused by the whirl can cause whirl 
instability through structural coupling for the case of an overhung rotor. The purpose of the present study is to verify this result 
with a more elaborate vibration analysis including both whirl and precession modes. In addition, the relative importance of whirl 
and precession moments is examined. The rotordynamic moment coefficients were determined from the fluid force moments 
measured in [10] and [11]. The stability analysis of a cantilevered rotor is carried out by using a lumped parameter model. By 
comparing the vibration modes of the rotor in the cases with ‘‘whirl’’, ‘‘precession’’, and ‘‘whirl and precession’’ moments, it was 
shown that the precession moment has a predominant effect for the stability of a shorter shaft. On the other hand, the whirl 
moment has a predominant effect for the stability of a longer shaft. 

2. Fluid Force Measurements 
2.1 Outline of Experiments 

Figure 2 shows the coordinate system and the definitions of the fluid force moments in whirling and precession motions. 
Figure 2(a) shows the general case of overhung rotor vibration. The rotor rotates with an angular velocity of ω and 
whirls/precesses with an angular velocity of Ω. The motion of the rotor can be decomposed to the whirling motion of Fig. 2(b) and 
precession motion of Fig. 2(c). The definitions of the fluid force moments in whirling and precession motions are shown in Figs. 
2(b) and (c), respectively. For the whirling motion, the disk has only a linear displacement ε. The normal moment Mn_W is a 
component normal to the whirl obit and the tangential moment Mt_W is a component tangential to it. For the precession motion, the 
disk has only an angular displacement α. The tangential component Mt_P is defined as the component in the angular displacement 
vector and the normal component Mn_P is normal to it. 

The schematic of the experimental facility is shown in Fig. 3. The Francis turbine runner is modeled by a disk with the 
diameter of DT=299mm set close to the casing with the axial clearance C2. The radial clearance C1 models the seal at the outer 
periphery. The disk rotates with an angular velocity of ω=400rpm. The rotational tip velocity UT (=(DT/2)ω) is used as the 
representative velocity. A swirl generator is used to produce the inlet swirl. The working fluid is water. The radius of the disk 
RT=DT/2 is 149.5mm. The inner radius of the casing Rinner is 47.5mm. The mean radial clearance is C1=1mm. The mean axial 
clearance C2 can be adjusted to 2mm, 4mm, and 6mm. The leakage flow is produced by an external pump. The leakage flow rate 
is represented by the nominal flow velocity vl in the radial clearance C1. The inlet swirl velocity was represented by the nominal 
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(tangential) velocity UJ through the swirl generator. The radial inlet/discharge was used to adjust the leakage flow rate.  
In the cases of whirling or precession motion, a linear displacement |ε| (=0.5mm) or an angular displacement |α| (=0.48deg) 

were given. The angular velocity of whirl and precession frequency is represented by Ω. The angular velocity ratio Ω/ω was 
varied from -1.2 to 1.2. For the detailed experimental facility and the measurement of the fluid force moments, refer to [10, 11]. 
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2.2 Experimental Fluid Force Moments 
Figure 4 shows the normalized whirl moments mn_W≡Mn_W/(ρπRT

3C2ω2|ε|), mt_W≡Mt_W/(ρπRT
3C2ω2|ε|) at various pre-

swirl velocities UJ/UT in the case of C2=4mm and vl/UT=0.170, where UJ is the tangential jet velocity from the swirl 
generator shown in Fig. 3 and defined positive when the swirl direction is the same as disk rotation. It was shown by a 
simplified vibration model [7] that the normal moment destabilizes the whirling or precession motion when it has the same 
sign as the angular velocity Ω of whirling or precession motion. The destabilizing regions are colored gray in Figs. 4(a) and 
5(a). The result in Fig. 4(a) shows that the normal moment mn_W destabilizes the whirling motion in a large region of angular 
velocity ratio Ω/ω. 

Figure 5 shows the normalized precession moments mn_P≡Mn_P/(/(ρRT
6ω2|α|/C2) and mt_P≡Mt_P//(ρRT

6ω2|α|/C2). It shows that 
the normal moment mn_P encourages the precession motion at small forward precession angular velocity ratios as shown in Fig. 
5(a). 

3. Stability Analysis 
3.1 Matrix Representation of Fluid Force Moment 

For the vibration analysis, it is conventional to represent the fluid forces (Fx, Fy)f and moments (Mx, My)f in terms of the linear 
displacements (X, Y) and angular displacements (Ax, Ay) as follows [12]. 
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In the present study to clarify the contribution of the moments, we neglect the fluid forces. The elements of the coefficient 
matrix can be obtained by fitting the normal and tangential moments by parabolic curves of Eqs. (2) and (3) [12]. 
For the whirling motion, 
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For the precession motion, 
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where, the matrix elements are normalized as follows. 
3 2

2/ ( )TK K R Cαε αε ρπ ω=% , 3 2
2/ ( )Tk k R Cαε αε ρπ ω=% , 3

2/ ( )TC C R Cαε αε ρπ ω=% , 3
2/ ( )Tc c R Cαε αε ρπ ω=% , 3

2/ ( )TM M R Cαε αε ρπ=% ,
3

2/ ( )Tm m R Cαε αε ρπ=% ,  
6 2

2/ ( / )TK K R Cα α ρ ω=% , 6 2
2/ ( / )Tk k R Cα α ρ ω=% , 6

2/ ( / )TC C R Cα α ρ ω=% , 6
2/ ( / )Tc c R Cα α ρ ω=% , 

6
2/ ( / )TM M R Cα α ρ=% , 6

2/ ( / )Tm m R Cα α ρ=% , f =Ω/ω, 
The nondimensional rotordynamic coefficients, which are obtained by curve fitting the experimental data shown in Figs. 4 and 5, 
are plotted against the swirl velocity coefficient UJ/UT in Figs. 6 and 7 for various values of C2. The results are used in the 
calculations in the following sections. 

3.2 Lumped Parameter Model 
For a cantilevered rotor system shown in Fig. 2, the equations of the motion of the rotor can be represented [13] by 
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where, {Fx, Fy, Mx, My}f are fluid forces and moments on the rotor (Although we will neglect the fluid forces, we retain them in 
the development of equations.). The stiffness matrix of the shaft with the overhung length L can be represented as follows.  
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If we use the complex parameters defined as follows,  
X jYε = + , x yA A jA= + , f xf yfF F jF= + ； f xf yfM M jM= +  (6) 

equation (4) can be simplified as below. 
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where G pM j I Aω= &  is the gyroscopic moment. The fluid forces and moments include the fluid forces and moments due to both 
the whirling and precession motions as expressed below. 
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The complex expression of Eq. (10) can be stated 
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For the precession motion, 
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The complex expression of Eq. (12) can be stated 
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Substituting Eqs. (8), (9), (11), (13) into Eq. (7), we can get 
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Considering the fundamental mode as shown in Fig. 2(a), we represent the displacements as follows. 
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Then we can express 
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By substituting Eq. (17) into Eqs. (14) and (15), the following equations can be obtained: 
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We define the following parameters. 
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Then equations (18) and (19) can be expressed as follows. 
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The condition for the linear homogeneous equation (21) to have nontrivial solution is  
1 2

3 4

0
A A
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Since Eq. (22) is a fourth order polynomial equation in terms of Ω, we can obtain four complex roots of Ω for a cert
ain rotational speed of the shaft ω. Generally Ω is a complex value: 

R IjΩ = Ω + Ω  (23) 
where the real part RΩ represents the frequency, and the imaginary part IΩ represents the damping rate. 

4. Results and Discussions 
Numerical calculations were made for the rotor shown in Fig. 3 used in the experiments to determine the fluid force moments. 

The numerical values of parameters are given in the Nomenclature.  The case of C2=4mm, vl/UT=0.170, and UJ/UT=0 are 
considered if not otherwise specified. 

4.1 The Effect of Fluid Force Moment on the Natural Frequency of the Rotor System 
Figure 8 shows the effect of each fluid force moment component on the complex frequency R IjΩ = Ω + Ω of the rotor-shaft 

system in the case of shaft length L/DT=3.344. The amplitude grows exponentially if the imaginary part IΩ  is negative. Since we 
focus on the fluid force moments, the fluid forces and the gyroscopic moment are neglected. The horizontal axis is the rotational 

speed ratio ω/ωn, where ωn (= 11
3

1 3
2 d d

K EI
M L M

= ) denotes the natural frequency of the lateral vibration of the cantilevered rotor-

shaft system. The plot of the results up to large ω/ωn is just to show the vibration characteristics more clearly, the validity of the 
fluid force moments has not been confirmed at high speeds. F1, F2 denote the first and second-order forward vibrations with ΩR>0, 
respectively. B1, B2 denote the first and second-order of backward vibrations with ΩR<0, respectively. However, we identify 
‘‘forward’’ or ‘‘backward’’ not from the sign on ΩR at each ω/ωn but from the sign of ΩR to which the solution approaches in the 
limit ω/ωn → 0. 

For the case without applying the fluid force moments as shown in Fig. 8(a), the two sets of conjugate roots of Eq. (22) can be 
stated as below, 
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2 1 2 1

2 2 2 2
, , , 11 22 11 11 22 22 21 12
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2F F B B d d d d d d d d d d

d d

I M I K K M I K I K K M K M I M K K
I M
±

Ω = + ± − + +  (24) 

where,
1 1F BΩ = −Ω , 

2 2F BΩ = −Ω . The plus sign on 2  in Eq. (24) is taken for the “forward” modes 
1,2FΩ and the minus sign 

for the “backward” modes
1,2BΩ . The minus sign in the square root is taken for the “first order” modes 

1,F BΩ and the plus sign for 

the “second order” modes
2,F BΩ .The imaginary part of the frequency Ω is always 0. It was confirmed that the numerical values 

obtained from the computations without fluid moment agree with Eq. (24). 
Figure 8(b) shows the complex frequencies under the condition with the whirl fluid force moment. The value of RΩ is 

different from that without fluid forces even at / 0nω ω = due to the fluid mass coefficients and changes with the rotational speed 
of the shaft ω/ωn caused by other fluid-dynamic parameters. The imaginary parts ΩI of F1 and B1 are mainly negative showing that 
the whirl moment mostly destabilizes the whirling motion as expected from the results in Fig. 4(a). The second order component 
is stabilizing except for F2 at smaller ω/ωn. This is because the destabilization by the whirl moment occurs through the structural 
coupling as shown in [10] between linear ( ε% ) and angular (α% ) displacements as shown in Fig. 12(b). It will be shown later that 
the 2nd order component includes only angular displacement as shown in Fig. 12(d). 

Figure 8(c) shows the complex frequencies with the precession moment. It shows that all of the real parts of the frequencies 
ΩR/ωn increase with increasing the rotational speed of the shaft. The real part of B1 increases from negative to positive as we 
increase the rotational speed. Positive ΩI of B1 and negative ΩI of F1 in ω/ωn>2.0 are expected from the results shown in Fig. 5(a), 
as will be discussed later.  

Figure 8(d) shows the results with both whirl and precession moments. This result is similar to the result with only whirl 
moment shown in Fig. 8(b), suggesting that the effect of whirl moment is more important at the present shaft length of 
L/DT=3.344. 

4.2 Correlation of Damping Rate ΩI with the Normal Moment Mn 
In order to discuss about the destabilizing effect of the whirl and precession moments, the whirl speed ratio ΩR/ω and the 

damping rate ΩI/ωn (in order to use the sign) are shown in Fig. 9(a) and (b), with whirl and precession moment, respectively. With 
the whirl moment, Fig. 9(a) shows that we have negative damping independently on the value of the whirl speed ratio ω/ωn , since 
the value of ΩR/ω is outside of the region 0<ΩR/ω<0.13 where mn_W in Fig. 4(a) becomes negative. This shows that the whirl 
moment is always destabilizing for the present case. On the other hand, Fig. 9(b) shows that the precession moment is stabilizing 
the backward mode B1. The forward precession moment is stabilizing for the cases when ΩR/ω is larger than 0.52 but destabilizing 
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when smaller than 0.52. If we refer to the normal moment mn_W and mn_p shown in Fig. 4(a) and Fig. 5(a), we find that these 
results agree with the result of simplified stability analysis that ‘‘moments are destabilizing when the normal component of the 
moment has the same sign as the whirl/precession speed ratio’’.  However, Fig. 9(b) shows that ΩR/ω of the backward mode B1 
becomes positive for ω/ωn>6.3. In this region mn_p shown in Fig. 5(a) is positive and ΩI/ωn<0 is expected from the simplified 
analysis. So, the criteria from the simplified analysis cannot be applied in this region. 

Figure 10 shows the trace of damping coefficients ΩI/ω and the frequency coefficients ΩR/ω, which corresponds to the angular 
velocity ratio Ω/ω in the experiment, of the lowest frequency modes F1 and B1, as the rotor speed ω/ωn is increased for the case 
with L/DT=3.344. The effect of inlet pre-swirl jet velocity UJ/UT is examined. The purpose of these plots is to examine the 
correlation of damping coefficients ΩI/ω with the normal fluid force moments mn_W and mn_p . The arrow denotes the direction of 
the trace when ω/ωn is increased. The thick density of the plot around ω/ωn=10 denote the solutions do not depend largely on ω/ωn 
when ω/ωn>2.0. 

Figure 10(a) shows the results with only the whirl moment. The negative value of ΩI/ω shows that the whirl moment always 
destabilizes the first order modes F1 and B1. First, we examine the backward mode B1 in the range -1<ΩR/ω<0. As the jet velocity 
increases, ΩI/ω increases correspondingly to the increase of the normal moment shown in Fig. 4(a). Second, we examine the 
forward mode F1 in the range 0<ΩR/ω<1. As the jet velocity increases, the value of |ΩI/ω| increases according to the increase of 
the normal moment. Thus, the inlet swirl in the direction of rotation of the rotor has the effect to increase the destabilization of the 
forward whirl and to decrease the destabilization of the backward whirl. 

Figure 10(b) shows the results with only the precession moment. In the region of backward precession B1 with ΩR/ω<0, the 
imaginary parts ΩI/ω are positive. This shows that the normal moment in the backward precession motion stabilizes the precession 
motion. The normal moment and hence ΩI/ω increases as the jet velocity increases. For the forward precession motion F1, the 
normal moment destabilizes the precession motion in a region of small positive angular velocity ratio ΩR/ω. The region changes 
largely as the jet velocity changes. Detailed examinations show that the value of ΩR/ω where ΩI/ω becomes zero in Fig. 10(b) 
agrees with the value of ΩR/ω where mn_P becomes zero in Fig. 5(a). 

4.3 Effects of the Shaft Length on the Natural Frequency and Vibration Mode 

4.3.1 For the case without fluid force moments 
We examine the effects of the shaft length L on the natural frequencies given by Eq. (24) while keeping the values of other 

parameters to be constant.  
Figure 11 shows the effect of the shaft length L on the 1st and the 2nd order frequencies for the case without fluid force 
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moment. It can be shown from Eq. (24) that for shorter shafts with 
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, where, 3
11 / 4 3 /k K EI Lε = = and 22 / 4 /k K EI Lα = = . /k Fε ε= is the stiffness showing the 

relation between the force F and linear deflection ε, without applying the moment M. kα=M/α is the stiffness showing the 
relation between the moment M and the angular displacement α, without applying the force F. Equation (18) shows that 

/ ( ) 2 / 3Lε α =% % when 11(1/ 2) /n dK MεωΩ = = and 0α =% when 112 n dK MεωΩ = = . Equation (19) shows that 

/ ( ) 1/ 2Lε α =% % when 22(1/ 2) /n dK IαωΩ = = and 0ε =% when 222 n dK IαωΩ = = . Equation (4) for steady deflection shows 
that the moment is zero when / ( ) 2 / 3Lε α =% %  and the force is zero when / ( ) 1/ 2Lε α =% % . 

Figure 12 shows the mode of deflection and associated stiffness. The above discussion shows that, for shorter shafts, the 1st 
order vibration mode is as shown in Fig. 12(b) and the 2nd order mode is as shown in Fig. 12(c); for longer shafts, the 1st order 
vibration mode is as shown in Fig. 12(a) and the 2nd order mode is as shown in Fig. 12(d).  

Figure 13 shows the amplitude ratio /( )Lε α% % and the phase difference { }/Arg ε α% % obtained from Eq. (21). In the limit of 

/ 0TL D → , the amplitude ratio /( )Lε α% % for F1 approaches 1/2 ; the amplitude ratio /( )Lε α% %  of F2 approaches infinity, 
because the angular displacement α% approaches to 0, as shown in Fig. 12(c). For longer shafts ( / TL D → ∞ ), the amplitude 
approaches 2/3 for F1 and 0 for F2 as expected. The phase difference { }/Arg ε α% % is always zero for F1 and π for F2. 

4.3.2 For the case with fluid force moments  
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Figures 14 and 15 show the complex frequencies (ΩR/ωn, ΩI/ωn) in the case of shaft length L/DT=0.033 and 6.688, respectively. 

Unrealistically extreme cases are considered here to clearly show the contributions of the whirl and precession moments. In Figs. 
14 and 15, (a), (b) and (c) show the results with the whirl, precession, and both of the moments, respectively.  

In the case of shorter shaft, shown in Fig. 14, both of the real part ΩR/ωn and the imaginary part ΩI/ωn shown in (c) are similar 
to the results shown in (b). This shows that the precession moment is important for the case of shorter shaft. On the other hand, the 
results shown in Fig. 15(c) are similar to the results shown in Fig. 15(a), which shows that the whirl moment is more important for 
the case of longer shafts. Firstly, we focus on the results of the first order frequency components F1 and B1. The whirl moments 
are always destabilizing the motion for both of shorter and longer shafts shown in Figs. 14(a) and 15(a). The precession moment 
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destabilizes F1 for ω/ωn>2 for the longer shafts, shown in Fig. 15(b). This is the same as in Fig. 8(c) and Fig. 9(b). However, for 
F1 for shorter shaft shown in Fig. 14(b), the precession moment stabilizes the vibration; this is because the angular velocity ratio 
ΩR/ω(≈0.62) is always larger than 0.5 for all the rotational speed ratio 0<ω/ωn<10. For the backward precession motion B1, the 
frequency ΩR/ωn is negative at ω/ωn=0. However, for the case of shorter shaft with L/DT=0.033 (Fig. 14(b)) and 3.344 (Fig. 8(c)), 
ΩR/ωn increases with the increase of ω/ωn and becomes positive at higher values of ω/ωn. For the case of Fig. 14(b), the value of 
ΩR/ω is approximately 0.16 for B1 mode. Figure 5(a) shows that the normal moment is positive at Ω/ω=0.16. The result of ΩI>0 
for B1 shown in Fig. 14(b) contradicts to the result of the simplified stability analysis that ‘‘moments are destabilizing when the 
normal component of the moment has the same sign as the whirl/precession speed ratio’’. Similar discrepancy is found also for B1 
at larger value of ω/ωn shown in Fig. 8(c), where ΩR/ωn becomes positive.  

Secondly, we focus on the results of the second order frequency components F2 and B2. The second order components are 
basically stabilizing or neutrally stabilizing. With the whirl moment, this is reasonable since the destabilization by the whirl 
moment is through the structural coupling of whirl and precession motion. Figure 14(b) shows that the precession moment is near 
neutral stability with small values of ΩI/ωn.  However, it includes a destabilizing region. Figure 18 shows the plot of ΩI/ω against 
ΩR/ω with ω/ωn as a parameter. The value of ΩI/ω becomes negative in the region 0<ΩR/ω<0.5 where Fig. 5(a) shows that mn_p>0 
suggesting that the precession moment can destabilize the second order forward mode F2. 

Corresponding to the complex frequencies shown in Figs. 14 and 15, the amplitude ratio  /Lα ε% %  and the phase difference 

{ }/Arg α ε% % of the vibration mode in the case of shaft length L/DT=0.033 and 6.688 are shown in Figs. 16 and 17, respectively. We 

first focus on the first order vibration mode. Near ω/ωn=0, the amplitudes ratio /Lα ε% %  is kept nearly constant at 3/2 for longer 
shaft and 2 for shorter shaft, corresponding to the natural modes shown in Fig. 12(a) and (b) respectively. However it deviates 
from those values above ω/ωn ≈ 2. The phase difference is near zero in this region. Nearly the same order of /Lα ε% %  for the 
shorter and longer shafts means that the amplitude ε% is practically larger for longer shafts. In the same way as for the frequency, 
the amplitude ratio and the phase difference with both whirl and precession moments are similar to the case with only precessing 
moment for shorter shaft, and to the case with only whirl moment for the case of longer shaft. Next, we consider the second order 
components. The amplitude ratio /Lα ε% % is near zero for shorter shafts and has larger values for longer shafts except for the result 
shown in Fig. 16(a). The phase difference is near π± around ω/ωn=0. It is interesting to note that the phase difference crosses 0 
or π± when ΩI in Figs.14 and 15 becomes 0. We can derive from Eq. (18) 

( )
2

2 211

12 11 11

2 4/ 1d d d
R I R I

K M M M
j

K L K L K
α ε

⎡ ⎤− Ω
= = − Ω − Ω − Ω Ω⎢ ⎥

⎣ ⎦
% %  (25) 



 

78

 
by neglecting the fluid moment coefficients and using Eq. (5). The relation between the phase difference and the sign of ΩI was 
confirmed for all cases with the effect of fluid moment. 

In summary, it was found that the whirl moment is always destabilizing the vibration for the cases of both shorter and longer 
shafts. However, with shorter shaft, stabilizing effect of precession moment is stronger than the destabilizing effect of the whirl 
moment and suppresses the instability. Thus, we can conclude that the whirl moment is more important than the precession 
moment, for the destabilization of the first order mode of the overhung rotor.  

In the above calculations, there are certain cases when the stability criteria obtained from simplified analysis cannot be applied. 
The simplified analysis assumes that the fluid force moments are so small as compared with other forces and the vibration mode is 
not largely affected by the fluid force moments. So, we carried out calculations with the fluid force moments reduced by a factor 
of 1000. Then we found that the destabilization by the whirl moment occurs in the region except for 0<ΩR/ω<0.13, and the 
destabilization by the precession moment in 0<ΩR/ω<0.52 for both longer and shorter shafts of the first order modes. This 
completely agrees with the stability criteria from simplified analysis and shows that the disagreement is caused by larger fluid 
force moments used for calculations. 

5. Conclusions  
The stability of an overhung rotor with the fluid force moment on a rotor caused by the leakage flow was examined based on a 

lumped parameter vibration model. The whirl and precession moments are considered. The results can be summarized as follows. 
(1) The whirl moment destabilizes the first order modes of overhung rotors with shorter and longer shafts at all rotor speed. 
(2) The precessing moment destabilizes the first order forward mode with longer shafts and the second order forward mode with 

shorter shaft in the range 0<ΩR/ω<0.52. However, it has stabilizing effects in other cases and is not important in the 
destabilization of overhung rotors. 

(3) The whirl moment is more important for overhung rotors with longer shafts and the precessing moment is important for 
overhung rotors with shorter shafts. 

(4) The second order modes are mostly stabilized by the whirl and precessing moments.  
(5) The stability criteria obtained by a simplified analysis that “positive normal moment with positive whirl/precession and 

negative normal moment with negative whirl/precession have the effect to destabilize the vibration” can be applied for the 
most cases. However it cannot be applied to the cases when the backward mode becomes forward caused by larger fluid 
moments compared with structural moments. 
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Nomenclature 
Ax, Ay 
C1, C2 
DT 
E 
f 
Fx, Fy 
I 
 
 

Angular displacements about x and y axis 
Radial and axial clearances 
Diameter of the disk (=0.299 [m]) 
Young’s modulus (=2.0×1011[Pa]) 
Angular velocity ratio in experiment(=Ω/ω) 
External forces in x and y directions 
Moment of inertia of the cross-section of the 
shaft (=7.85×10-9[m4]), shaft diameter 
(=0.02[m]) 

RT 
t  
UJ 
UT 
vl 
X, Y 
|α| 
 
α%  

Disk radius (=0.1495[m]) 
Time or tangential direction 
Jet velocity from the swirl generator 
Tip velocity of the disk (=RTω) 
Leakage flow velocity (=Q/ (πDTC1)) 
Linear displacements in x and y directions 
Angular displacement of the disk (=0.48[deg]) 
in the experiment 
Amplitude of angular displacement of the  
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Id, Ip 
 

j 
L 
Md 
Mn, Mt 
Mn_P, Mt_P 

 
mn_P, mt_P 

 
Mn_W, Mt_W 
 
mn_W, mt_W 

 
Mx, My 
n 
Q 
Rinner 

Diametral and polar moment of inertia 
(Id=0.011[Kg ⋅ m2], Ip=0.021[Kg ⋅ m2]) 
Imaginary unit 
Length of the shaft, (=0.01; 1; 2 [m]) 
Mass of the disk (=2.079 [Kg]) 
Normal and tangential fluid force moments 
Normal and tangential precession fluid force 
moments 
Normalized normal and tangential precession 
fluid force moments 
Normal and tangential whirl fluid force 
moments 
Normalized normal and tangential whirl  
fluid force moments 
External moments in x and y directions 
Normal direction 
Volume flow rate 
Inner radius of the casing (=0.0475[m]) 

 
|ε| 
 
ε%  
φ 
ρ 
Ω 
 
 
ΩR 
ΩI 
ω 
Superscript
∼  
Subscript 
f 
G 

disk 
Linear displacement of the disk (=0.5[mm]) 
in the experiment 
Amplitude of linear displacement of the disk 
Phase difference of α% / ε%  
Density of working fluid (=997.07 [Kg/m3] 
Angular velocity of whirling or precession 
motion in experiment; Complex angular 
velocity in calculation 
Real part of Ω in calculation 
Imaginary part of Ω in calculation 
Rotational angular velocity of the shaft 
 
Nondimensional rotordynamic coefficients 
 
Fluid 
Gyro 
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