Measurement of Viscoelastic Constants from Multiple Phase MR Elastography Fitting Elastic Wave

탄성파를 적용한 다중 위상 MR Elastography로부터의 점탄성 정수의 측정

  • Received : 2012.05.21
  • Accepted : 2012.08.01
  • Published : 2012.07.30

Abstract

In the medical field, the hardening of tissues is one of important informations used in diagnosis or understanding progress of disease, a quantitative measuring method of hardening is important for objective diagnosis. It has been proposed MRE(Magnetic Resonance Elastography) method that measures an index of hardening, viscoelastic properties in a noninvasive. Because the S/N ratio of MRE images go down when measuring viscoelastic properties from local wavelength and local damping factor of a propagating wave in MRE method, methods using multiple phase MRE images have been examined to decrease the effect of noise. We propose a method measuring viscoelastic properties after Fitting a function for multiple phase MRE images in this research. This proposed method has a advantage to set up arbitrarily the variation rate of a space direction of viscoelastic properties or the spatial resolution of measuring values according to changing of the noise included in images, though it applies viscoelastic wave for multiple phase MRE images. We confirmed the effectiveness of a proposed method by experiment using simulation images and experiment using silicone-gel phantom.

의료분야에서 조직의 경화는 진단 또는 질환의 진행상황의 파악에 이용되는 중요한 정보의 한 가지이며, 객관적인 진단을 위해서는 경화의 정량적 계측법이 중요하다. 경화의 지표인 점탄성 정수를 비침습적으로 계측하는 방법으로 MRE(Magnetic Resonance Elastography) 법이 제안되고 있다. MRE 법에서는 전파파(propagating wave)의 국소 파장과 국소 감쇠율로부터 점탄성 정수를 구하는데 MRE 화상은 S/N 비가 낮아지므로, 잡음의 영향을 감소시키기 위하여 다중 위상 MRE 화상을 이용한 방법이 검토되고 있다. 본 연구에서는 다중 위상 MRE 화상에 함수를 적용하여 점탄성 정수를 측정하는 방법을 제안한다. 제안 방법은 다중 위상 MRE 화상에 점탄성파를 적용시키지만, 점탄성 정수의 공간방향으로의 변화율이나 화상에 포함된 잡음에 따라 측정값의 공간분해능을 임의적으로 설정할 수 있다는 장점이 있다. 시뮬레이션 화상을 이용한 실험과 silicone-gel phantom을 이용한 실험에 의하여 제안된 방법의 유효성을 확인하였다.

Keywords

References

  1. C. Sumi and K. Nakayama, "A robust numerical solution to reconstruct a globally relative shear modulus distribution from strain measurement," IEEE Trans. Med Imaging, vol.17(1998), no.3, pp.419-428. https://doi.org/10.1109/42.712131
  2. M. Yamakawa and T. Shiina, "Tissue elasticity reconstruction based on modified 3-dimensional finite element model," Jpn. J. Appl. Phys., vol.44, no.6B(2005), pp.4567-4577. https://doi.org/10.1143/JJAP.44.4567
  3. T. L. Chenevert, A. R. Skovoroda, M. O'Donnell, and S. Y. Emelianov, "Elasticity reconstructive imaging by means of stimulated echo MRl," Magnetic Resonance in Medicine, vol.39, no.3(1998), pp.482-490. https://doi.org/10.1002/mrm.1910390319
  4. J. Bercoff, M. Tanter, and M. Fink, "Supersonic shear imaging: A new technique for soft tissues elasticity mapping," IEEE Trans. Ultrason. Ferroelecr., Freq. Control, vol.51, no.4(2004), pp.396-409.
  5. R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A Manduca, and R. L. Ehman, "Magnetic resonance elastography by direct visualization of propagating acoustic strain waves," Science, vol.269(1995), pp.1854-1857. https://doi.org/10.1126/science.7569924
  6. A. Manduca, R. MuthupiIlai, P. J. Rossman, J. F. Greenleaf, A Manduca, and R. L. Ehman, "Image processing for magnetic resonance elastography," SPIE, vol.2710(1996), pp.616-623.
  7. M. Fink, L. Sandrin, M. Tanter, S. Catheline, S. Chaffai, J. Bercoff, and J. L. Gennisson, "Ultra high speed imaging of elasticity," IEEE Ultrasonics Symposium(2002), pp.1811-1820.
  8. M. Tanter, J. Bercoff, L. Sandrin, and M. Fink, "Ultrafast compound imaging for 2-D motion vector estimation: Application to transient elastography," IEEE Trans. Ultrason. Ferroelecr., Freq. Control, vol.49, no.10(2002), pp.1363-1374. https://doi.org/10.1109/TUFFC.2002.1041078
  9. H. Knutsson, C. F. Westin, and G. Granlund, "Local multi scale frequency and bandwidth estimation," Proc. IEEE Intl. Conf. on Image Processing(1994), pp.36-40.
  10. A. Manduca, V. Dutt, D. T. Borup, R. Muthupillai, R. L. Ehman, and J. F. Greenleaf, "Reconstruction of elasticity and attenuation map in shear wave imaging: In inverse approach," Proc. LNCS, vol.1496(1998), pp.606-613.
  11. M. Suga, T. Matsuda, K. Minato, O. Oshiro, K. Chihara, J. Okamoto, O. Takizawa, M. Komori, and T. Takahashi, "Measurment of invivo local shear modulus using MR elastography mutiple phase patchwork offsets," IEEE Trans. Biomed Eng., vol.50(2003), no.7, pp.908-915. https://doi.org/10.1109/TBME.2003.813540
  12. M. Suga, T. Matsuda, K. Minato, O. Oshiro, K. Chihara, J. Okamoto, O. Takizawa, M. Komori, and T. Takahashi, "Measurment of in-vivo local shear modulus by combining mutiple phase offsets MR elastography," MEDlNFO2001(2001), pp.933-937.
  13. J. Braun, G. Buntkowsky, J. Bernarding, T. Tolxdorff, and I. Sack, "Simulation and analysis of magnetic resonance elastography wave images using coupled harmonic oscillators and Gaussian local frequency estimation," Magnetic Resonance Imaging, vol.19(2001), pp.703-713. https://doi.org/10.1016/S0730-725X(01)00387-3
  14. T. Oida, Y. Kang, T. Matsuda, J. Okamoto, T. Azuma, O. Takizawa, A. Amano, and S. Tsutsumi, "Bed-type oscillator for MR elastography," Proc. ISMRM 12th Scientific Meeting(2004), p.1773.
  15. A. Manduca, D. S. Lake, S. A. Kruse, and R. L. Ehman, "Spatio-temporal directional filtering for improved inversion of MR elastography images," Medical Image Analysis, vol.7(2003), pp.465-473. https://doi.org/10.1016/S1361-8415(03)00038-0