• Title/Summary/Keyword: Damage location

Search Result 933, Processing Time 0.022 seconds

Damage assessment in periodic structures from measured natural frequencies by a sensitivity and transfer matrix-based method

  • Zhu, Hongping;Li, Lin;Wang, Dansheng
    • Structural Engineering and Mechanics
    • /
    • v.16 no.1
    • /
    • pp.17-34
    • /
    • 2003
  • This paper presents a damage assessment procedure applied to periodic spring mass systems using an eigenvalue sensitivity-based method. The damage is directly related to the stiffness reduction of the damage element. The natural frequencies of periodic structures with one single disorder are found by adopting the transfer matrix approach, consequently, the first order approximation of the natural frequencies with respect to the disordered stiffness in different elements is used to form the sensitivity matrix. The analysis shows that the sensitivity of natural frequencies to damage in different locations depends only on the mode number and the location of damage. The stiffness changes due to damage can be identified by solving a set of underdetermined equations based on the sensitivity matrix. The issues associated with many possible damage locations in large structural systems are addressed, and a means of improving the computational efficiency of damage detection while maintaining the accuracy for large periodic structures with limited available measured natural frequencies, is also introduced in this paper. The incomplete measurements and the effect of random error in terms of measurement noise in the natural frequencies are considered. Numerical results of a periodic spring-mass system of 20 degrees of freedom illustrate that the proposed method is simple and robust in locating single or multiple damages in a large periodic structure with a high computational efficiency.

Seismic damage estimation through measurable dynamic characteristics

  • Lakshmanan, N.;Raghuprasad, B.K.;Muthumani, K.;Gopalakrishnan, N.;Sreekala, R.
    • Computers and Concrete
    • /
    • v.4 no.3
    • /
    • pp.167-186
    • /
    • 2007
  • Ductility based design of reinforced concrete structures implicitly assumes certain damage under the action of a design basis earthquake. The damage undergone by a structure needs to be quantified, so as to assess the post-seismic reparability and functionality of the structure. The paper presents an analytical method of quantification and location of seismic damage, through system identification methods. It may be noted that soft ground storied buildings are the major casualties in any earthquake and hence the example structure is a soft or weak first storied one, whose seismic response and temporal variation of damage are computed using a non-linear dynamic analysis program (IDARC) and compared with a normal structure. Time period based damage identification model is used and suitably calibrated with classic damage models. Regenerated stiffness of the three degrees of freedom model (for the three storied frame) is used to locate the damage, both on-line as well as after the seismic event. Multi resolution analysis using wavelets is also used for localized damage identification for soft storey columns.

A new statistical moment-based structural damage detection method

  • Zhang, J.;Xu, Y.L.;Xia, Y.;Li, J.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.4
    • /
    • pp.445-466
    • /
    • 2008
  • This paper presents a novel structural damage detection method with a new damage index based on the statistical moments of dynamic responses of a structure under a random excitation. After a brief introduction to statistical moment theory, the principle of the new method is put forward in terms of a single-degree-of-freedom (SDOF) system. The sensitivity of statistical moment to structural damage is discussed for various types of structural responses and different orders of statistical moment. The formulae for statistical moment-based damage detection are derived. The effect of measurement noise on damage detection is ascertained. The new damage index and the proposed statistical moment-based damage detection method are then extended to multi-degree-of-freedom (MDOF) systems with resort to the leastsquares method. As numerical studies, the proposed method is applied to both single and multi-story shear buildings. Numerical results show that the fourth-order statistical moment of story drifts is a more sensitive indicator to structural stiffness reduction than the natural frequencies, the second order moment of story drift, and the fourth-order moments of velocity and acceleration responses of the shear building. The fourth-order statistical moment of story drifts can be used to accurately identify both location and severity of structural stiffness reduction of the shear building. Furthermore, a significant advantage of the proposed damage detection method lies in that it is insensitive to measurement noise.

Structural damage identification of truss structures using self-controlled multi-stage particle swarm optimization

  • Das, Subhajit;Dhang, Nirjhar
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.345-368
    • /
    • 2020
  • The present work proposes a self-controlled multi-stage optimization method for damage identification of structures utilizing standard particle swarm optimization (PSO) algorithm. Damage identification problem is formulated as an inverse optimization problem where damage severity in each element of the structure is considered as optimization variables. An efficient objective function is formed using the first few frequencies and mode shapes of the structure. This objective function is minimized by a self-controlled multi-stage strategy to identify and quantify the damage extent of the structural members. In the first stage, standard PSO is utilized to get an initial solution to the problem. Subsequently, the algorithm identifies the most damage-prone elements of the structure using an adaptable threshold value of damage severity. These identified elements are included in the search space of the standard PSO at the next stage. Thus, the algorithm reduces the dimension of the search space and subsequently increases the accuracy of damage prediction with a considerable reduction in computational cost. The efficiency of the proposed method is investigated and compared with available results through three numerical examples considering both with and without noise. The obtained results demonstrate the accuracy of the present method can accurately estimate the location and severity of multi-damage cases in the structural systems with less computational cost.

Experimental and numerical structural damage detection using a combined modal strain energy and flexibility method

  • Seyed Milad Hosseini;Mohamad Mohamadi Dehcheshmeh;Gholamreza Ghodrati Amiri
    • Structural Engineering and Mechanics
    • /
    • v.87 no.6
    • /
    • pp.555-574
    • /
    • 2023
  • An efficient optimization algorithm and damage-sensitive objective function are two main components in optimization-based Finite Element Model Updating (FEMU). A suitable combination of these components can considerably affect damage detection accuracy. In this study, a new hybrid damage-sensitive objective function is proposed based on combining two different objection functions to detect the location and extent of damage in structures. The first one is based on Generalized Pseudo Modal Strain Energy (GPMSE), and the second is based on the element's Generalized Flexibility Matrix (GFM). Four well-known population-based metaheuristic algorithms are used to solve the problem and report the optimal solution as damage detection results. These algorithms consist of Cuckoo Search (CS), Teaching-Learning-Based Optimization (TLBO), Moth Flame Optimization (MFO), and Jaya. Three numerical examples and one experimental study are studied to illustrate the capability of the proposed method. The performance of the considered metaheuristics is also compared with each other to choose the most suitable optimizer in structural damage detection. The numerical examinations on truss and frame structures with considering the effects of measurement noise and availability of only the first few vibrating modes reveal the good performance of the proposed technique in identifying damage locations and their severities. Experimental examinations on a six-story shear building structure tested on a shake table also indicate that this method can be considered as a suitable technique for damage assessment of shear building structures.

Optimization of Sensor Location for Real-Time Damage assessment of Cable in the cable-Stayed Bridge (사장교 케이블의 실시간 손상평가를 위한 센서 배치의 최적화)

  • Geon-Hyeok Bang;Gwang-Hee Heo;Jae-Hoon Lee;Yu-Jae Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.172-181
    • /
    • 2023
  • In this study, real-time damage evaluation of cable-stayed bridges was conducted for cable damage. ICP type acceleration sensors were used for real-time damage assessment of cable-stayed bridges, and Kinetic Energy Optimization Techniques (KEOT) were used to select the optimal conditions for the location and quantity of the sensors. When a structure vibrates by an external force, KEOT measures the value of the maximum deformation energy to determine the optimal measurement position and the quantity of sensors. The damage conditions in this study were limited to cable breakage, and cable damage was caused by dividing the cable-stayed bridge into four sections. Through FE structural analysis, a virtual model similar to the actual model was created in the real-time damage evaluation method of cable. After applying random oscillation waves to the generated virtual model and model structure, cable damage to the model structure was caused. The two data were compared by defining the response output from the virtual model as a corruption-free response and the response measured from the real model as a corruption-free data. The degree of damage was evaluated by applying the data of the damaged cable-stayed bridge to the Improved Mahalanobis Distance (IMD) theory from the data of the intact cable-stayed bridge. As a result of evaluating damage with IMD theory, it was identified as a useful damage evaluation technology that can properly find damage by section in real time and apply it to real-time monitoring.

A leak detection and 3D source localization method on a plant piping system by using multiple cameras

  • Kim, Se-Oh;Park, Jae-Seok;Park, Jong Won
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.155-162
    • /
    • 2019
  • To reduce the secondary damage caused by leakage accidents in plant piping systems, a constant surveillance system is necessary. To ensure leaks are promptly addressed, the surveillance system should be able to detect not only the leak itself, but also the location of the leak. Recently, research to develop new methods has been conducted using cameras to detect leakage and to estimate the location of leakage. However, existing methods solely estimate whether a leak exists or not, or only provide two-dimensional coordinates of the leakage location. In this paper, a method using multiple cameras to detect leakage and estimate the three-dimensional coordinates of the leakage location is presented. Leakage is detected by each camera using MADI(Moving Average Differential Image) and histogram analysis. The two-dimensional leakage location is estimated using the detected leakage area. The three-dimensional leakage location is subsequently estimated based on the two-dimensional leakage location. To achieve this, the coordinates (x, z) for the leakage are calculated for a horizontal section (XZ plane) in the monitoring area. Then, the y-coordinate of leakage is calculated using a vertical section from each camera. The method proposed in this paper could accurately estimate the three-dimensional location of a leak using multiple cameras.

A Study on the Noise Near the Butane-can Explosion Location (부탄 캔 폭발장소 주변의 소음에 관한 연구)

  • 임사환
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1166-1175
    • /
    • 2004
  • People in the advanced society have deep interest in such environmental problems as noise, air quality, water pollution, etc. This paper submits the result of the research on the noise In the surroundings of the butane can explosion location. First, the noise level measured in a residential area, 245 meters' away from the butane can explosion location, was 59.3 dB. Also, the noise level measured in the IGUP (International Graduate University of Peace), 300 meters' away from the explosion site, was 52.5 dB. Second, the above noise levels are lower than the level specified In the Environmental Standard (65 dB), which represented that the experiment was safe. Third, the noise level in a place away from the butane can explosion location varied in accordance with the direction of the wind. Consequently, the noise in all locations (the places where damage to people is expected) surrounding the experimental butane can explosion location was measured to identify the effect of the wind irection.

Using harmonic class loading for damage identification of plates by wavelet transformation approach

  • Beheshti-Aval, S.B.;Taherinasab, M.;Noori, M.
    • Smart Structures and Systems
    • /
    • v.8 no.3
    • /
    • pp.253-274
    • /
    • 2011
  • In this paper, the harmonic displacement response of a damaged square plate with all-over part-through damage parallel to one edge is utilized as the input signal function in wavelet analysis. The method requires the properties of the damaged plate, i.e., no information about the original undamaged structure is required. The location of damage is identified by sudden changes in the spatial variation of transformed response. The incurred damage causes a change in the stiffness or mass of the plate. This causes a localized singularity which can be identified by a wavelet analysis of the displacement response. In this study via numerical examples shown by using harmonic response is more versatile and effective compared with the static deflection response, specially in the presence of noise. In the light of the obtained results, suggestions for future work are presented and discussed.

Non-Contact Damage Detection of Rotating Shafts by Using the Magnetostrictive Effect (마그네토스트릭션 효과를 이용한 회전축의 비접촉 결함진단)

  • Kim, Yun-Yeong;Han, Sun-U;Lee, Ho-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1599-1607
    • /
    • 2002
  • The purpose of this work is to suggest a new non-contact damage detection method for rotating ferromagnetic shafts. The presence and the location of a damage in rotating shafts are assessed by means of longitudinal elastic waves propagating along the shafts. These waves are measured by non-contact magnetostrictive sensors consisting of a coil and bias magnets. This paper shows the effectiveness of the sensors in the damage detection of rotating shafts. Several issues occurring in the application of the sensors to rotating shafts are carefully investigated.