• 제목/요약/키워드: Damage Signal

Search Result 615, Processing Time 0.029 seconds

Fracture Behavior of CFRP by Time-Frequency Analysis Method (시간-주파수 해석법에 의한 CFRP의 파괴 거동)

  • Nam, Ki-Woo;Ahn, Seok-Hwan;Lee, Sang-Kee;Kim, Hyun-Soo;Moon, Chang-Kwon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.39-45
    • /
    • 2001
  • Fourier transform has been one of the most common tools to study the frequency characteristics of signals. With the Fourier transform alone, however, it is difficult to tell whether signal's frequency contents evolve in time or not. Except for a few special cases, the frequency contents of most signals encountered in the real world change with time. Time-frequency analysis methods are developed recently to overcome the drawbacks of Fourier transform, which can represent the information of signals in time and frequency at the same time. In this study, damage process of a cross-ply carbon fiber reinforced plastic (CFRP) under monotonic tensile loading was characterized by acoustic emission. Different kinds of CFRP specimens were used to determine the characteristics of AE signals. Time-frequency analysis methods were employed for the analysis of fracture mechanisms in CFRP such as mix cracking, debonding, fiber fracture and delamination.

  • PDF

Reconstruction and Deconvolution of X-Ray Backscatter Data Using Adaptive Filter (적응필터를 이용한 적층 복합재료에서의 역산란 X-Ray 신호처리 및 복원)

  • Kim, Noh-Yu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.545-554
    • /
    • 2000
  • Compton X-ray backscatter technique has been used to quantitatively assess the impact damage in quasi-isotropic laminated composites and to obtain a cross-sectional profile of impact-damaged laminated composites from the density variation of the cross section. An adaptive filter is applied to the Compton backscattering data for the reconstruction and noise reduction from many sources including quantum noise, especially when the SNR(signal-to-noise ratio) of the image is relatively low. A nonlinear reconstruction model is also proposed to overcome distortion of the Compton backscatter image due to attenuation effects, beam hardening, and irregular distributions of the fibers and the matrix in composites. Delaminations masked or distorted by the first few delaminations near the front surface are detected and characterized both in width and location, by application of an error minimization algorithm.

  • PDF

Scale Thickness Measurement of Steam Generator Tubing Using Eddy Current Signal of Bobbin Coil (보빈코일 와전류신호를 이용한 증기발생기 세관 스케일 두께 측정)

  • Kim, Chang-Soo;Um, Ki-Soo;Kim, Jae-Dong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.5
    • /
    • pp.545-550
    • /
    • 2012
  • Steam generator is one of the major components of nuclear power plant and steam generator tubes are the pressure boundary between primary and secondary side, which makes them critical for nuclear safety. As the operating time of nuclear power plant increases, not only damage mechanisms but also scaled deposits on steam generator tubes are known to be problematic causing tube support flow hole blockage and heat fouling. The ability to assess the extent and location of scaled deposits on tubes became essential for management and maintenance of steam generator and eddy current bobbin data can be utilized to measure thickness of scale on tubes. In this paper, tube reference standards with various thickness of scaled deposit has been set up to provide information about the overall deposit condition of steam generator tubes, providing essential tool for steam generator management and maintenance to predict and prevent future damages. Also, methodology to automatically measure scale thickness on tubes has been developed and applied to field data to estimate overall scale amount.

Effects of Aronia melanocarpa and Korean Red Ginseng Ethanol Extracts Combination on Cytotoxicity induced by Fludarabine, a DNA Chain Terminating Anti-Cancer Drug (DNA 사슬 종결형 항암제인 플루다라빈에 의해 유도된 세포독성에 대한 아로니아-홍삼 에탄올 혼합 추출물의 효과)

  • Kim, Min Seob;Chung, You Heon;Oh, Hong Geun;Park, Jong Kun
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.4
    • /
    • pp.673-680
    • /
    • 2017
  • Fludarabine, a chain terminating anti-cancer drug, is a purine analogue that causes DNA strand breaks in normal cells. In this study, we determined if A. melanocarpa and Korean red ginseng extract mixture reduce cytotoxicity of fludarabine. Treatment of HaCaT cells with $10{\mu}M$ of fludarabine for 24 hours decreased cell viability and increased DNA strand breaks. Treatment of A. melanocarpa and Korean red ginseng extract mixture for 24 hours increased cell viability as compared with single extract treatment. The protective effect of these extracts on cell activity increased in a concentration-dependent manner. DNA strand breaks induced by fludarabine decreased as concentration of extract mixture increased. p-H2AX level, a marker of DNA strand breakage, decreased depending on the concentration of extract mixture. The effect of mixed extract of A. melanocarpa and Korean red ginseng on DNA damage is due to the anti-oxidative effect of A. melanocarpa and signal transmission through glucocorticoid receptor upon binding of saponin of Korean red ginseng.

Research for improving vulnerability of unmanned aerial vehicles (무인항공기 보안 취약점 개선을 위한 연구)

  • Lee, Kyung-Hwan;Ryu, Gab-Sang
    • Smart Media Journal
    • /
    • v.7 no.3
    • /
    • pp.64-71
    • /
    • 2018
  • Utilization of unmanned aerial vehicles (UAVs) are rapidly expanding to various fields ranging from defense, industry, entertainment and personal hobbies. Due to the increased activities of unmanned airplanes, many security problems have emerged, including flight path errors to undesired destinations, secondary threats due to exposed securities caused by the capture of unmanned airplanes in hostile countries. In this paper, we find security vulnerabilities in UAVs such as GPS spoofing, hacking captured video information, malfunction due to signal attenuation through jamming, and exposure of personal information due to image shooting. In order to solve this problem, the stability of the unstructured data is secured by setting the encryption of the video shooting information section using the virtual private network (VPN) to prevent the GPS spoofing attack. In addition, data integrity was ensured by applying personal information encryption and masking techniques to minimize the secondary damage caused by exposure of the UAV and to secure safety. It is expected that it will contribute to the safe use and stimulation of industry in the application field of UAV currently growing.

Flexible smart sensor framework for autonomous structural health monitoring

  • Rice, Jennifer A.;Mechitov, Kirill;Sim, Sung-Han;Nagayama, Tomonori;Jang, Shinae;Kim, Robin;Spencer, Billie F. Jr.;Agha, Gul;Fujino, Yozo
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.423-438
    • /
    • 2010
  • Wireless smart sensors enable new approaches to improve structural health monitoring (SHM) practices through the use of distributed data processing. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While much of the technology associated with smart sensors has been available for nearly a decade, there have been limited numbers of fulls-cale implementations due to the lack of critical hardware and software elements. This research develops a flexible wireless smart sensor framework for full-scale, autonomous SHM that integrates the necessary software and hardware while addressing key implementation requirements. The Imote2 smart sensor platform is employed, providing the computation and communication resources that support demanding sensor network applications such as SHM of civil infrastructure. A multi-metric Imote2 sensor board with onboard signal processing specifically designed for SHM applications has been designed and validated. The framework software is based on a service-oriented architecture that is modular, reusable and extensible, thus allowing engineers to more readily realize the potential of smart sensor technology. Flexible network management software combines a sleep/wake cycle for enhanced power efficiency with threshold detection for triggering network wide operations such as synchronized sensing or decentralized modal analysis. The framework developed in this research has been validated on a full-scale a cable-stayed bridge in South Korea.

A wireless guided wave excitation technique based on laser and optoelectronics

  • Park, Hyun-Jun;Sohn, Hoon;Yun, Chung-Bang;Chung, Joseph;Kwon, Il-Bum
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.749-765
    • /
    • 2010
  • There are on-going efforts to utilize guided waves for structural damage detection. Active sensing devices such as lead zirconate titanate (PZT) have been widely used for guided wave generation and sensing. In addition, there has been increasing interest in adopting wireless sensing to structural health monitoring (SHM) applications. One of major challenges in wireless SHM is to secure power necessary to operate the wireless sensors. However, because active sensing devices demand relatively high electric power compared to conventional passive sensors such as accelerometers and strain gauges, existing battery technologies may not be suitable for long-term operation of the active sensing devices. To tackle this problem, a new wireless power transmission paradigm has been developed in this study. The proposed technique wirelessly transmits power necessary for PZT-based guided wave generation using laser and optoelectronic devices. First, a desired waveform is generated and the intensity of the laser source is modulated accordingly using an electro-optic modulator (EOM). Next, the modulated laser is wirelessly transmitted to a photodiode connected to a PZT. Then, the photodiode converts the transmitted light into an electric signal and excites the PZT to generate guided waves on the structure where the PZT is attached to. Finally, the corresponding response from the sensing PZT is measured. The feasibility of the proposed method for wireless guided wave generation has been experimentally demonstrated.

Design, calibration and application of wireless sensors for structural global and local monitoring of civil infrastructures

  • Yu, Yan;Ou, Jinping;Li, Hui
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.641-659
    • /
    • 2010
  • Structural Health Monitoring (SHM) gradually becomes a technique for ensuring the health and safety of civil infrastructures and is also an important approach for the research of the damage accumulation and disaster evolving characteristics of civil infrastructures. It is attracting prodigious research interests and the active development interests of scientists and engineers because a great number of civil infrastructures are planned and built every year in mainland China. In a SHM system the sheer number of accompanying wires, fiber optic cables, and other physical transmission medium is usually prohibitive, particularly for such structures as offshore platforms and long-span structures. Fortunately, with recent advances in technologies in sensing, wireless communication, and micro electro mechanical systems (MEMS), wireless sensor technique has been developing rapidly and is being used gradually in the SHM of civil engineering structures. In this paper, some recent advances in the research, development, and implementation of wireless sensors for the SHM of civil infrastructures in mainland China, especially in Dalian University of Technology (DUT) and Harbin Institute of Technology (HIT), are introduced. Firstly, a kind of wireless digital acceleration sensors for structural global monitoring is designed and validated in an offshore structure model. Secondly, wireless inclination sensor systems based on Frequency-hopping techniques are developed and applied successfully to swing monitoring of large-scale hook structures. Thirdly, wireless acquisition systems integrating with different sensing materials, such as Polyvinylidene Fluoride(PVDF), strain gauge, piezoresistive stress/strain sensors fabricated by using the nickel powder-filled cement-based composite, are proposed for structural local monitoring, and validating the characteristics of the above materials. Finally, solutions to the key problem of finite energy for wireless sensors networks are discussed, with future works also being introduced, for example, the wireless sensor networks powered by corrosion signal for corrosion monitoring and rapid diagnosis for large structures.

Mannosylerythritol lipids ameliorate ultraviolet A-induced aquaporin-3 downregulation by suppressing c-Jun N-terminal kinase phosphorylation in cultured human keratinocytes

  • Bae, Il-Hong;Lee, Sung Hoon;Oh, Soojung;Choi, Hyeongwon;Marinho, Paulo A.;Yoo, Jae Won;Ko, Jae Young;Lee, Eun-Soo;Lee, Tae Ryong;Lee, Chang Seok;Kim, Dae-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.2
    • /
    • pp.113-120
    • /
    • 2019
  • Mannosylerythritol lipids (MELs) are glycolipids and have several pharmacological efficacies. MELs also show skin-moisturizing efficacy through a yet-unknown underlying mechanism. Aquaporin-3 (AQP3) is a membrane protein that contributes to the water homeostasis of the epidermis, and decreased AQP3 expression following ultraviolet (UV)-irradiation of the skin is associated with reduced skin moisture. No previous study has examined whether the skin-moisturizing effect of MELs might act through the modulation of AQP3 expression. Here, we report for the first time that MELs ameliorate the UVA-induced downregulation of AQP3 in cultured human epidermal keratinocytes (HaCaT keratinocytes). Our results revealed that UVA irradiation decreases AQP3 expression at the protein and messenger RNA (mRNA) levels, but that MEL treatment significantly ameliorated these effects. Our mitogen-activated protein kinase inhibitor analysis revealed that phosphorylation of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase or p38, mediates UVA-induced AQP3 downregulation, and that MEL treatment significantly suppressed the UVA-induced phosphorylation of JNK. To explore a possible mechanism, we tested whether MELs could regulate the expression of peroxidase proliferator-activated receptor gamma ($PPAR-{\gamma}$), which acts as a potent transcription factor for AQP3 expression. Interestingly, UVA irradiation significantly inhibited the mRNA expression of $PPAR-{\gamma}$ in HaCaT keratinocytes, whereas a JNK inhibitor and MELs significantly rescued this effect. Taken together, these findings suggest that MELs ameliorate UVA-induced AQP3 downregulation in HaCaT keratinocytes by suppressing JNK activation to block the decrease of $PPAR-{\gamma}$. Collectively, our findings suggest that MELs can be used as a potential ingredient that modulates AQP3 expression to improve skin moisturization following UVA irradiation-induced damage.

IoT-based Dangerous Zone Alarming System for Safety Management in Construction Sites (건설 현장 안전관리를 위한 IoT 기반의 위험구역 경보 시스템)

  • Kim, Seung-Ho;Kang, Chang-Soon;Ryu, HanGuk
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.10
    • /
    • pp.107-115
    • /
    • 2019
  • Effective construction safety management systems are desperately required for reducing damage caused by increasing safety accidents in construction sites. Safety accidents in construction sites can effectively protect if proactive measures are taken to prevent unauthorized worker access the expected hazardous area. In this study, we have developed a IoT(Internet of Things)-based dangerous zone alarming system for safety management in construction sites, which can be operated at low cost in large-scale sites as well as small and medium-sized construction sites. The development system utilizes a Zigbee-based beacon technology and cellular mobile communication technology to detect when authorized workers, unauthorized field workers or outsiders approaches hazardous zones. If somebody approaches the dangerous zones the system notifies immediately to the safety manager with a danger warning signal. It is expected that this system can effectively prevent safety accidents when applied to construction sites.