• Title/Summary/Keyword: Dam break analysis

Search Result 52, Processing Time 0.022 seconds

DAM BREAK FLOW ANALYSIS WITH APPROXIMATE RIEMANN SOLVER

  • Kim, Dae-Hong
    • Water Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.175-185
    • /
    • 2003
  • A numerical model to analyze dam break flows has been developed based on approximate Riemann solver. The governing equations of the model are the nonlinear shallow-water equations. The governing equations are discretized explicitly by using finite volume method and the numerical flux are reconstructed with weighted averaged flux (WAF) method. The developed model is verified. The first verification problem is about idealized dam break flow on wet and dry beds. The second problem is about experimental data of dam break flow. From the results of the verifications, very good agreements have been observed

  • PDF

Modeling Downstream Flood Damage Prediction Followed by Dam-Break of Small Agricultural Reservoir (농업용 소규모 저수지의 붕괴에 따른 하류부 피해예측 모델링)

  • Park, Jong-Yoon;Joh, Hyung-Kyung;Jung, In-Kyun;Jung, Kwan-Soo;Lee, Joo-Heon;Kang, Bu-Sik;Yoon, Chang-Jin;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.6
    • /
    • pp.63-73
    • /
    • 2010
  • This study is to develop a downstream flood damage prediction model for efficient confrontation in case of extreme and flash flood by future probable small agricultural dam break situation. For a Changri reservoir (0.419 million $m^3$) located in Yongin city of Gyeonggi province, a dam break scenario was prepared. With the probable maximum flood (PMF) condition calculated from the probable maximum precipitation (PMP), the flood condition by dam break was generated by using the HEC-HMS (Hydrologic Engineering Center - Hydrologic Modeling System) model. The flood propagation to the 1.12 km section of Hwagok downstream was simulated using HEC-RAS (Hydrologic Engineering Center - River Analysis System) model. The flood damaged areas were generated by overtopping from the levees and the boundaries were extracted for flood damage prediction, and the degree of flood damage was evaluated using IDEM (Inundation Damage Estimation Method) by modifying MD-FDA (Multi-Dimensional Flood Damage Analysis) and regression analysis simple method. The result of flood analysis by dam-break was predicted to occurred flood depth of 0.4m in interior floodplain by overtopping under PMF scenario, and maximum flood depth was predicted up to 1.1 m. Moreover, for the downstream of the Changri reservoir, the total amount of the maximum flood damage by dam-break was calculated nearly 1.2 billion won by IDEM.

Three-dimensional Numerical Analysis of Dam-break Waves on a Fixed and Movable Bed (고정상 및 이동상 수로에서 댐 붕괴파의 3차원 수치해석)

  • Kim, Dae Geun;Hwang, Gun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4B
    • /
    • pp.333-341
    • /
    • 2011
  • This study analyzed the propagation of dam-break waves in an area directly downstream of a dam by using 3D numerical modeling with RANS as the governing equation. In this area, the flow of the waves has three dimensional characteristics due to the instantaneous dam break. In particular, the dam-break flows are characterized by a highly unsteady and discontinuous flow, a mixture of the sharp flood waves and their reflected waves, a mixture of subcritical and supercritical flow, and propagation in a dry and movable bed. 2D numerical modeling, in which the governing equation is the shallow water equation, was regarded as restricted in terms of dealing with the sharp fluctuation of the water level at the dam-breaking point and water level vibration at the reservoir. However, in this 30 analysis of flood wave propagation due to partial dam breaking and dam-break in channels with $90^{\circ}$ bend, those phenomena were properly simulated. In addition, the flood wave and bed profiles in a movable bed with a flat/upward/downward bed step, which represents channel aggradation or degradation, was also successfully simulated.

An Analysis of Outflow Hydrograph Resulting from an Earth Dam-Break (Earth Dam의 파괴로 인한 유출수문곡선의 해석)

  • Han, Kun Yeun;Lee, Jong Tae;Lee, Won Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.41-50
    • /
    • 1985
  • The mathematical analysis of the outflow hydrograph resulting from earth dam-break was studied. DBFW(Dam Break Flood Wave) model based on the breach mechanism and reservoir storage equation was developed and was applied to the Teton and Buffalo-Creek dam. The modeling results showed that the shape of outflow hydrograph, peak discharge and failure duration time had a good agreement with the data analyzed by NWS. The breach mechanisms which exert influence on the outflow hydrograph were consisted of geomorphological characteristics of the reservoir, breach mode, breach width and failure duration time. The earth dams in Korea were classified into four types by the reservoir geomorphology, and water surface elevation-failure duration time-peak discharge relationships were also presented. The methodological procedure made in this paper will provide a basic contribution to dam-break study in river system.

  • PDF

Analysis of Hydrograph by Dam Breach Shapes (댐 파괴형상에 따른 수문곡선 해석)

  • Park, Ki-Bum
    • Journal of Environmental Science International
    • /
    • v.16 no.4
    • /
    • pp.487-493
    • /
    • 2007
  • In this study is analysis which dams breach shapes are effect on peak discharge of dam-failure. The dam breach shapes and failure time are important peak discharge when dam failure. When dam failure times are 1hr, 2hr and 3hr condition for the ECRD and 0.1hr and 0.2hr for the CG and CFRD that breach shapes changed base length $B_b=1Hd,\;B_b=2Hd\;and\;B_b=3Hd$. As the results from DAMBRK(Dam Break model) peak discharge are increase base widths lengthen. As failure time is longer then peak discharge is decrease. So peak discharge is increase more short of dam failure time. Also peak discharge is increase become larger dam breach shapes.

Numerical Simulation of Dam Break Flow using EFDC Model and Parameter Sensitivity Analysis (EFDC 모형을 이용한 댐 붕괴류 수치모의 및 매개변수 민감도 분석)

  • Jang, Chul;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.143-149
    • /
    • 2016
  • In this study, a series of numerical simulation of dam break flow was conducted using EFDC model, and input conditions including cell size, time step, and turbulent eddy viscosity were considered to analyze parameter sensitivity. In case of coarse mesh layout, the propagated length of the shock wave front was ${\Delta}_x$ longer than that of other mesh layouts, and the velocity results showed jagged edge, which can be cured by applying fine grid mesh. Turbulent eddy viscosity influenced magnitude of the maximum velocity passing through gate up to 20% and the cell Peclet number less than 2.0 ensured no numerical oscillations.

Numerical Analysis of Dam-break Waves in an L-shaped Channel with a Movable Bed (L자형 이동상수로에서 댐 붕괴파의 수치해석)

  • Kim, Dae-Geun;Hwang, Gun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.3
    • /
    • pp.291-300
    • /
    • 2012
  • We conducted a three-dimensional numerical simulation by using the FLOW-3D, with RANS as the governing equation, in an effort to track the dam-break wave.immediately after a dam break.in areas surrounding where the dam break took place as well as the bed change caused by the dam-break wave. In particular, we computed the bed change in the movable bed and compared the variation in flood wave induced by the bed change with our analysis results in the fixed bed. The analysis results can be summarized as follows: First, the analysis results on the flood wave in the L-shaped channel and on the flood wave and bed change in the movable-bed channel successfully reproduce the findings of the hydraulic experiment. Second, the concentration of suspended sediment is the highest in the front of the flood wave, and the greatest bed change is observed in the direct downstream of the dam where the water flow changes tremendously. Generated in the upstream of the channel, suspended sediment results in erosion and sedimentation alternately in the downstream region. With the arrival of the flood wave, erosion initially prove predominant in the inner side of the L-shaped bend, but over time, it tends to move gradually toward the outer side of the bend. Third, the flood wave in the L-shaped channel with a movable bed propagates at a slower pace than that in the fixed bed due to the erosion and sedimentation of the bed, leading to a remarkable increase in flood water level.

UNCERTAINTY IN DAM BREACH FLOOD ROUTING RESULTS FOR DAM SAFETY RISK ASSESSMENT

  • Lee, Jong-Seok
    • Water Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.215-234
    • /
    • 2002
  • Uncertainty in dam breach flood routing results was analyzed in order to provide the basis fer the investigation of their effects on the flood damage assessments and dam safety risk assessments. The Monte Carlo simulation based on Latin Hypercube Sampling technique was used to generate random values for two uncertain input parameters (i.e., dam breach parameters and Manning's n roughness coefficients) of a dam breach flood routing analysis model. The flood routing results without considering the uncertainty in two input parameters were compared with those with considering the uncertainty. This paper showed that dam breach flood routing results heavily depend on the two uncertain input parameters. This study indicated that the flood damage assessments in the downstream areas can be critical if uncertainty in dam breach flood routing results are considered in a reasonable manner.

  • PDF

DEVELOPMENT OF 2D DAM BREAK FLOW ANALYSIS MODEL USING FRACTIONAL STEP METHOD

  • Kim, Dae-hong;Kim, Woo-gu;Chae, Hyo-sok;Park, Sang-geun
    • Water Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.23-30
    • /
    • 2002
  • A numerical model for the solution of two-dimensional dam break problems using fractional step method is developed on unstructured grid. The model is based on second-order Weighted Averaged Flux(WAF) scheme with HLLC approximate Riemann solver. To control the nonphysical oscillations associated with second-order accuracy, TVD scheme with SUPERBEE limiter is used. The developed model is verified by comparing the computational solutions with analytic solutions in idealized test cases. Very good agreements have been achieved in the verifications.

  • PDF

Impact of Parameters of Nonlinear Breach Progression Curve on Outflow Rate (저수지 붕괴함수의 매개변수 결정이 유량과 침수범위에 미치는 영향)

  • Lee, Khil-Ha
    • Journal of Environmental Science International
    • /
    • v.28 no.2
    • /
    • pp.211-217
    • /
    • 2019
  • A Numerical modeling approach is usually applied to reproduce the physical phenomena of a fill dam-break. The accuracy of the dam-break model depends on the physical structure that defines input variables such as the storage volume, breach formation and progress, and the parameters of the model, which are subjective as they are prescribed by users. In this study, a sensitivity analysis was performed for the nonlinear breach progression curve that was already developed, which includes four parameters. The study focuses on the two of the parameters which control the breach forming time and peak discharge. The model is coupled with a two-dimensional flood simulation model (FLO-2D) to examine flood coverage and depth. It is generally observed that the parameter ${\beta}$ controls only the breach forming time, the parameter ${\gamma}$ is particularly sensitive to the peak flow.