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Abstract: A numerical model to analyze dam break flows has been developed based on approximate Riemann solver.

The governing equations of the model are the nonlinear shallow-water equations. The governing equations are discre-

tized explicitly by using finite volume method and the numerical flux are reconstructed with weighted averaged flux

(WAF) method. The developed model is verified. The first verification problem is about idealized dam break flow on

wet and dry beds. The second problem is about experimental data of dam break flow. From the results of the verifica-

tions, very good agreements have been observed
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1. INTRODUCTION

The flows by dam break would change
abruptly in space and time on large area. These
flows can be simulated by two-dimensional hy-
perbolic type shallow-water equations.

Many numerical models which analyze dam
break flows have been developed. Glaister
(1988) used a finite difference method based on
a flux difference splitting to solve the one- di-
mensional dam break problem. Mingham and
Causon (1999) described a finite volume method
to simulate two-dimensional shallow-water flow.
They used a monotone upstream-centered scheme
for conservation law (MUSCL) reconstruction and
Riemann solver. Fujihara et al. (2000) presented a
second-order accurate Godunov type finite volume
numerical model for the two-dimensional con-
servative hyperbolic shallow-water equations on

a nonorthogonal curvilinear coordinate. Zhao et
al. (1994, 1996) developed a finite volume
model with first-order accuracy on an unstruc-
tured gird system. Wang et al. (2000) employed
a total variation diminishing (TVD) finite dif-
ference scheme and Kim et al. (2002) employed
a TVD finite volume scheme to solve dam break
problems. All of these models produced very
good results but they were applied to only flat
bottoms.

Fraccarollo and Toro (1995) and Brocchini et
al. (2001) proposed second-order accurate nu-
merical schemes of the Godunov type for
two-dimensional problems on wet and dry beds.
On the basis of the shock capturing weighted
averaged flux scheme, two-dimensional flows
were solved by sequences of argumented
one-dimensional flows in the numerical model.
Zoppou and Stephen (1999, 2000) used a frac-
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tional step method and first-order approximate
Riemann solver based on the WAF method to
solve shallow-water equations on an unstruc-
tured triangular grid. They obtained a sec-
ond-order accuracy in the Cartesian grid. Brad-
ford and Sanders (2002) proposed a finite vol-
ume method coupled with MUSCL data recon-
struction and Riemann solver. These models
were considered to resolve shock very accu-
rately and give good results on uneven topogra-
phy.

Because the dam break flows have very com-
plicate physical characteristics, in order to ana-
Iyze the flows it is necessary to integrate all
properties developed in numerical models which
are mentioned above. That is, the numerical
model which has an ability to capture shocks,
handle a complex geometry, and simulate flows
on wet and dry beds simultaneously can be ap-
plied dam break flows. In our review, only
Fraccarollo and Toro's (1995) and Zoppou and
Stephen's (1999, 2000) models can be applied to
practical dam break problems.

In the present study, the development process
of a numerical model which can be used to ana-
lyze various dam break flows is presented. Also,
some flux limiters to control the numerical os-
cillations related with second-order accurate
scheme are tested and in order to verify the ac-
curacy and ability of the numerical model, some

test problems are solved.

2. GOVERNING EQUATIONS AND
NUMERICAL SCHEME

2.1 Governing equations

The nonlinear shallow-water equations in
conservative form including bottom slopes are
adequate to describe the flow motions by dam
break are shown as follows:

Water Engineering Research, Vol. 4, No.4, 2003

ok o _g 0

o ox oy

In equation (1), the vector of conserved vari-
ables U, the flux vectors E and F in the X - and

y-directions and the source term S can be writ-

ten as
h hu
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hv huv
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where # is the total water depth, u and v are the
velocities in the x- and y-directions, g is the ac-
celeration due to gravity, and S,, and S,, are bed
slope components in the x- and y-directions,
respectively. S; and S, are bottom friction terms
in the x- and y-directions, respectively.

By integrating the shallow-water equations
(1) over an arbitrary cell, the equations of the
finite volume method can be obtained as

9 [ UdA+§G -nd2 = §Sd0 (3
Ot 94 Q Q

where G is the flux tensor, 4 and Q are the
surface area and boundary of the control volume
L, respectively, and n is the outward unit vector
normal to the boundary. By introducing rota-
tional invariance the equation (3) becomes

dU 1 & s 4
@ T Z}:L V'G(T,U)dA =S

where T is the transformation matrix and by
using equation (4), two-dimensional problems
can be applied on unstructured grids. More de-
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tailed descriptions on governing equations and
unstructured grid system can be found in Kim et
al. (2002), hence those are not repeated here
again.

2.2 HLLC approximate Riemann solver

Billett, et al. (1997) used the HLLC approxi-
mate Riemann solver to solve the one-, two- and
three-dimensional hyperbolic problems and Kim
et al. (2002) applied it on analysis of shallow
water problems. The details of HLLC approxi-
mate Riemann solver are written on those mate-
rials and then this paper has only brief descrip-
tions.

For the convenience, if we assume that the
flow varies only x -direction and neglect the

source terms then the equation (1) becomes

VL E o 6)
ot ox
In equation (5), U is a vector of three con-
served variables. Therefore the system of equa-
tion (5) which is hyperbolic has three distinct
real eigen values and the solution to Riemann
problem consists of three waves with speeds §

S.

U.
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separating four constant states as described in
Figure 1. Therefore, as shown in Figure 1, in
HLLC approximate Riemann solver, the vari-
ables are separated as

for
for

(6)

Ux,y) = for

(== e
E R T o]

for

£
n
=
|

and the reconstructed numerical flux can be

written as
E, for
e _ | B, ~Bu 48U -U,) for
i+l/2 E} =E,+S,(U,-U,) for
E, for
0<S,
S,£0<8, 0
8,058,
S <

where the subscript +1/2 means an intercell
boundary, L and R mean the left and right com-
putational cells. The wave speeds are given as

Sk

Uz

0

>
X

Figure 1. HLLC approximate Riemann solver structure
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S, =min(y, —\/E, 7 —\/EE)
N ®

Sp =max(u, ++/8hy, u.+/gh)
where /i« is given as

b = (uy +24Jh, —uy -2,h, )’ ©)
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An advantage of HLLC approximate Rie-
mann solver is that it uses wave speeds based on
analytic dry front speeds, consequently, it pro-
duces better results than Roe's solver on dry bed.

That is, equation (8) is valid only when there
exists a finite water depth in the entire computa-
tional domain. However, if a dry bed exists then
no shock exists and wave speeds should be used
by another analytic method. In HLLC scheme,
the wave speed of left side dry case (4;,=0 and
hg>0) and right side dry case (hz>0 and A;>0)

are given as

S, =u,—-2\gh S, =u, —+Jgh

L R 8hy LT U gn; (10)
S.=8, So =S,

Se=uy++/ghy Sp=u, +2,/gh,

In order to control the numerical oscillations
related with second-order accuracy TVD scheme
is employed. The numerical flux at intercell
boundary including flux limiter is given as

1 1.
E.,= E (E,+E.,) —E leg’(Ck )(p,.’:]/zAEfH /2
k=1

(11)

in which E:,,, =EU,,,), €, is the Courant

number for a wave k of speed S; and
k k+1 k k 1 S
AE;,,=E,-E @k, is a flux limiter

i+1/2 /2"

function related TVD scheme, which controls
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the numerical oscillations. Four flux limiter func-
tions, that is SUPERA, VANLEE, VANALB and
MINAAA written on Toro (1999), are used and
compared with each other in later section. The
limiters used in this study are given as

1 for r<0
1-2(—|c,r for 0<r<1/2
Dsupera (1:K5) = 'Ck‘ for 1/2<rx<l]
I-(=|epr  for 1<r<2
e, |-1 for 2<r
(12)
1 for <0
Pranied k) = 1_(1_|ck )2r
1 - for r20
+r
(13)
1 for r<0
Pranarht-F)= 1_(1_|Ck Dr1+r)
1472 or r2>0
(14)
1 for r<0
Ounankr-K)={1~(=|c, )y  for 0<r<i
el for r21
(15)

2.3 Source Term Treatment

The equation (5) does not contain the source
terms. The form of equation (5) involving
source terms can be solved by the splitting tech-
nique. That is, for the X -direction

oU ¢E
PDE:—+-—=0 ; a o,
o ox ——UX
IC :U*
du
ODE-"E:SX LY § 3 (16)
ic :u¥

The procedure for analysis of flux part is
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written above paragraph. The source part can be
solved by ordinary differential solver. In this
study the source terms are discretized by using
pointwise scheme and solved by explicit Euler
method. More details about theoretical aspects
of splitting technique a governing equation into
flux and source part and ordinary differential
solver are explained well in Zoppou and
Stephen (1999, 2000) and Hu et al. (2000).

By using a fractional step method, the
two-dimensional shallow-water equations can be
split into two augmented one-dimensional equa-
tions along x- and y-directions. The solutions of
each fractioned equation can be obtained by the
numerical technique described on above para-
graph. If we denote x™ as the procedure of
equations (16) and denote y* for y -direction,
respectively, then the approximate solution of
two-dimensional problem can be obtained by
using the equation (17) which is second-order
accurate in space.

Uk+1 =yAt/2xA1/2yAt/2xA//2(Uk) (17)

2.4 Boundary conditions
Representatively, two types of boundary con-
ditions are modeled. The reflective boundary

condition is given as

., by, (18)
U=\ —uy, | > U= —u,,
Ve Vo2

and the transmissive boundary condition is
given as

U,=U,, » U,,=U,, (19)

where U , Imeans a conservative variable vector

at right end boundary in split one- dimensional
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equations.

3. VERIFICATION OF NUMERICAL
MODEL

In order to verify the capability of numerical
model based on HLLC approximate Riemann
solver, comparisons are made with analytic so-
lutions and experimental data.

3.1 Verifications with Analytic solutions of
Idealized Dam Break Flows

To verify the accuracy of the developed
model, dam break flows on horizontal bottom
are simulated and compared with analytical so-
lutions (Toro, 2001). The channel length is 100
m and the dam located on center of the channel.

The Figures 2(a)~(f) describe the water sur-
face obtained at 8.0 second after dam break. In
these applications, a finite water depth existed
all over the computational domain, that is, up-
stream water depth is 1.0 m and the downstream
water depth is 0.1 m. All of the computed results
show reasonable. In Figure 2(a), however, there
is numerical diffusion originated from first- or-
der accuracy upwind scheme and in Figure 2(b),
there is numerical oscillation originated from
second-order accuracy numerical scheme. Con-
sequently, some discrepancies are shown around
bore in Figures 2(a) and 2(b). The results shown
in Figures 2(c)~(f) are obtained with four dif-
ferent flux limiters and seem to be very accu-
rate.

The Figures 3 show the details of Figures 2.
The discrepancies between the analytic solution
and the computed result by second-order oscil-
latory scheme is largest and the computed result
by first-order upwind scheme is following. Al-
though the computed result with SUPERA flux
limiter is most accurate among all computed
results with flux limiters, the discrepancies are
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very small and negligible.

The Figures 4(a)~(f) describe the water sur-
face obtained at 8.0 second after dam break. In
this case, a finite water depth existed only on
upstream. On downstream, dry bed condition is
applied, that is, upstream water depth is 1.0 m
and the downstream water depth is 0.0 m. All of
the computed results seem to be also reasonable.
In Figure 4(a) and Figure 4(b), numerical diffu-
sion originated from first-order accuracy upwind
scheme and numerical oscillation originated
from second-order accuracy numerical scheme
are also shown like wet bed case. Consequently,
some discrepancies are detected around bore in
Figures 4(a) and 4(b). The results shown in Fig-
ures 4(c)~(f) obtained with four flux limiters
and seem to be very accurate. Above mentioned,
the developed model calculates the conserved
variables with analytic method. Therefore the
computed results around the boundaries between
wet and dry beds are very accurate. The small
difference mainly comes from that the computa-
tional hydraulic problems are solved on discre-
tized domains. On discretized domains, the
computed water depth is averaged depth by the
area of each cell, which makes the computed
water depth small.

The Figures 5 show the details of Figures 4.
Similar to the wet bed case, the discrepancy
between the analytic solution and the computed
result by second-order oscillatory scheme is
largest and the computed result by first-order
upwind scheme follows. The computed result
with SUPERA flux limiter is most accurate but
the discrepancies between computed result by
SUPERA and other flux limiters are very small
and negligible, too.

3.2 Verification with Experimental Data
In the second verification, the numerical solu-
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tions are compared with experimental data. Bel-
los et al. (1992) investigated experimentally the
flow depth in a converging-diverging open
channel. Because of converging-diverging shape,
slope and friction, it is impossible to obtain so-
lutions by analytic methods.

The plan view of the channel is shown in
Figure 6. As described on Figure 6, the channel
length is 21.2m, the slope is 0.002, and the
width varies from 0.6 m to 1.4 m. At the down-
stream end, free overfall conditions were ap-
plied and vertical walls were installed at the
other sides. A dam is located on 8.5 m from
upstream.

The upstream water surface elevation was 3.0
m and the downstream water depth was 0.0m,
that is, dry bed condition was setup. During the
numerical simulations, the Manning’s roughness
coefficient n is input by 0.013, the wall fric-
tions were neglected, and SUPERA flux limiter
was used.

The Figures 7(a)~(d) show the computed wa-
ter surface elevation. In Figure 7(b) and 7(c), the
water column depicted in Figure 7(a) is col-
lapsed and the water surface elevation of up-
stream side descends down. On downstream
side, the released water from upstream reservoir
flow toward downstream end and overfall. Fi-
nally, almost of water was released 60 second
after dam break as shown in Figure 7(d).

The Figures 8(a)~8(d) show the measured re-
sults and computed results on four points. The
main reason of small discrepancy is caused by
the frictionless wall conditions, use of Man-
ning’s equation that is derived from steady flow.
Additionally, because we regard the flows in
three-dimensional space as flows in two- di-
mensional space, it is natural that there are dif-
ferences the computed results and measured data.
In practical view, the computed results and the
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measured data agree well and it can be con-
cluded that the present model can be reliably
applied on two-dimensional dam break flow
predictions.

4. CONCLUSIONS

In the present study, a numerical model to
analyze the two-dimensional dam break flows
based on HLLC approximate Riemann solver is
developed and verified. The advantage of ap-
proximate Riemann solver is to capture the
shock generated with dam break. The numerical
oscillations commonly observed in second-order
accuracy are controlled by exploiting four flux
limiters.

In order to verify the accuracy and applicabil-
ity of the presented model, idealized dam break
flow problems on wet and dry beds are tested.
Obtained computed results are compared with
available analytic solutions and measured data.
The computed results with flux limiters are

more accurate than the computed results without
flux limiter. The SUPERA limiter gives the most
accurate results but the discrepancies are negli-
gible. The computed results from the simula-
tions for experiment by Bellos et al. also show
very good results. Consequently, the numerical
model and numerical techniques are very robust
to analyze and to simulate dam break flows.
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