• Title/Summary/Keyword: DSSCs

Search Result 213, Processing Time 0.021 seconds

Effect of Transparency of CNT counter electrodes on the Efficiency of DSSCs

  • Lee, Won-Jae;Ramasamy, Easwaramoorthi;Lee, Dong-Yun;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.615-616
    • /
    • 2005
  • Carbon Nanotubes (CNT) on flexible indium tin oxide (ITO) PET films were prepared for dye-sensitized solar cell (DSSC). These CNTs were prepared by spray coating method for various amount of light transparency. Also, Pt counter electrode was prepared by electro deposition method. All $TiO_2$ electrodes were deposited on ITO-PET films by spray coating method. Micro structural images show that CNT counter electrodes prepared by spray-coating have more dense structure with increasing spraying time (0 to 60 seconds). DSSC consisting of $TiO_2$ electrode and CNT counter electrode was fabricated with various amount of light absorption. DSSC have higher light energy conversion efficiency with increasing the thickness of CNT counter electrode. CNT counter electrode is at least compatible to that of CNT counter electrode.

  • PDF

Characterization of substrates using Fluor-doped Tin Oxide and Gallium-doped Zinc Oxide for Dye Sensitized Solar cells

  • Gong, Jae-Seok;Choe, Yun-Su;Kim, Jong-Yeol;Im, Gi-Hong;Jeon, Min-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.318.2-318.2
    • /
    • 2013
  • 기존의 염료감응형 태양전지(Dye Sensitized Solar Cells; DSSCs)는 최대 효율 11~12%의 광전변환효율을 가지고 있다. 이러한 한계를 극복하기 위해서 광흡수 층 최적화, 상대전극의 촉매성 증대, 전해질의 산화 환원 반응 최적화 등의 많은 연구가 이루어지고 있다. 본 연구에서는 DSSCs의 광전변환효율을 증가시키고자 기존의 투명전극 및 기판으로 사용되는 FTO(Fluor-doped Tin Oxide)를 GZO(Gallium-doped Zinc Oxide)를 사용하여 투명전극기판에 따른 계면 저항, 전류손실 등 DSSCs에 미치는 영향을 분석하였다. 본 연구에 사용된 FTO는 ${\sim}7{\Omega}/{\square}$의 면저항과 80%이상의 투과도를 갖고 있으나 Ion-Sputtering 법으로 증착된 GZO는 열처리 과정을 통하여 $3{\sim}4{\Omega}/{\square}$의 면 저항을 나타내고 80%이상의 우수한 투과도를 가지고 있다. 이러한 두 기판의 특성 비교를 위해, UV-Visble Spectrophotometer를 사용하여 광학적 특성을 분석하고, SEM(Scanning Electron Microscope), AFM(Atomic Force Microscope)를 사용하여 표면 특성을 평가하였다. 또한 전기적 특성을 분석하기 위하여 4-Point-probe를 이용하여 면 저항을 측정하였고, DSSCs의 효율 및 Fill Factor를 분석하기 위하여 Solar Simulator의 I-V measurement를 이용하였다.

  • PDF

Synthesis of CoSe2/RGO Composites and Its Application as a Counter Electrode for Dye-Sensitized Solar Cells

  • Ko, Yohan;Choi, Wooyeol;Kim, Youbin;Lee, Chanyong;Jun, Yongseok;Kim, Junhee
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.313-320
    • /
    • 2019
  • In this study, cobalt diselenide ($CoSe_2$) and the composites ($CoSe_2@RGO$) of $CoSe_2$ and reduced graphene oxide (RGO) were synthesized by a facile hydrothermal reaction using cobalt ions and selenide source with or without graphene oxide (GO). The formation of $CoSe_2@RGO$ composites was identified by analysis with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and scanning electron microscopy (SEM). Electrochemical analyses demonstrated that the $CoSe_2@RGO$ composites have excellent catalytic activity for the reduction of $I_3{^-}$, possibly indicating a synergetic effect of $CoSe_2$ and RGO. As a consequence, the $CoSe_2@RGO$ composites were applied as a counter electrode in DSSC for the reduction of redox couple electrolyte, and exhibiting the comparable power conversion efficiency (7.01%) to the rare metal platinum (Pt) based photovoltaic device (6.77%).

Co-sensitization of N719 with an Organic Dye for Dye-sensitized Solar Cells Application

  • Wu, Zhisheng;Wei, Yinni;An, Zhongwei;Chen, Xinbing;Chen, Pei
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1449-1454
    • /
    • 2014
  • The co-sensitization of N719 with a cyclic thiourea functionalized organic dye, coded AZ5, for dye-sensitized solar cells (DSSCs) was demonstrated. Due to its intensive absorption in ultraviolet region, AZ5 could compensate the loss of light harvest induced by triiodide, thereby the short-circuit photocurrent density ($J_{sc}$) was increased for co-sensitized (N719+AZ5) DSSC. Moreover, the electron recombination and dye aggregation were retarded upon N719 cocktail co-sensitized with AZ5, thus the open-circuit voltage ($V_{oc}$) of co-sensitized device was enhanced as well. The increased $J_{sc}$ (17.9 $mA{\cdot}cm^{-2}$) combined with the enhanced $V_{oc}$ (698 mV) ultimately resulted in an improved power conversion efficiency (PCE) of 7.91% for co-sensitized DSSC, which was raised by 8.6% in comparison with that of N719 (PCE = 7.28%) sensitized alone. In addition, co-sensitized DSSC exhibited a better stability than that of N719 sensitized device probably due to the depression of dye desorption.

Carbon nanofiber and metal oxide composites for photovoltaic cells

  • O, Dong-Hyeon;Gu, Bon-Yul;Bae, Ju-Won;An, Hyo-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.412-412
    • /
    • 2016
  • 염료감응 태양전지(dye-sensitized solar cells, DSSCs)는 식물의 광합성원리와 매우 유사한 작동원리를 갖고 있는 전지이며, 간단한 구조, 저렴한 제조단가, 친환경성 등의 등의 장점으로 인하여 많은 관심을 모으고 있다. 이러한 염료감응 태양전지는 빛을 받아들인 염료분자가 전자-홀 쌍을 생성하며 전자는 반도체 산화물을 통해 이동되고 전해질의 산화환원 과정을 통해 염료 분자가 다시 환원되는 순환메커니즘을 따르고 있다. 일반적으로 염료감응 태양전지는 밴드 갭 에너지가 큰 반도체 산화물을 포함하는 작업전극, 산화환원 반응을 통해 전자를 염료로 보내는 전해질, 환원 촉매역할을 하는 상대전극으로 구성되어 있다. 특히, 상대전극으로는 우수한 촉매특성과 높은 전도성을 갖는 백금이 가장 많이 이용되고 있지만 가격이 비싸고 요오드에 취약하기 때문에 상용화에 큰 장애물이다. 따라서, 백금을 대체하기 위해 저가의 탄소나 고분자에 대한 연구가 활발히 진행되고 있고, 그 중 탄소나노섬유(carbon nanofiber, CNFs)는 높은 표면적과 뛰어난 화학적 안정성으로 촉매효율을 증대시킬 수 있어 촉매물질로서 관심이 높아지고 있다. 본 연구에서는 상대전극에 탄소나노섬유기반 복합체를 합성하였고, 성공적으로 저가격 및 고성능의 염료감응 태양전지를 제작하였다. 이때, 지지체인 탄소나노섬유는 전기방사법을 통해 합성하였으며, 수열합성법을 이용하여 금속산화물을 담지하였다. 이렇게 제작된 탄소나노섬유-Fe2O3 복합체는 scanning electron microscopy, transmission electron microscopy, X-ray diffraction, 그리고 X-ray photoelectron spectroscopy 통해 구조적, 화학적 특성을 평가하였으며 전기화학적 특성 및 광전변환 효율을 분석하기 위해 cyclic voltammetry, electrochemical impedance spectroscopy, 그리고 solar simulator를 사용하였다. 본 학회에서 위와 관련된 더 자세한 사항에 대해 논의할 것이다.

  • PDF

Fabrication of Octahedral Co3O4/Carbon Nanofiber Composites for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells (염료감응 태양전지의 Pt-free 상대전극을 위한 팔면체 Co3O4/탄소나노섬유 복합체 제조)

  • An, HyeLan;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.26 no.5
    • /
    • pp.250-257
    • /
    • 2016
  • Octahedral $Co_3O_4$/carbon nanofiber (CNF) composites are fabricated using electrospinning and hydrothermal methods. Their morphological characteristics, chemical bonding states, and electrochemical properties are used to demonstrate the improved photovoltaic properties of the samples. Octahedral $Co_3O_4$ grown on CNFs is based on metallic Co nanoparticles acting as seeds in the CNFs, which seeds are directly related to the high performance of DSSCs. The octahedral $Co_3O_4$/CNFs composites exhibit high photocurrent density ($12.73mA/m^2$), superb fill factor (62.1 %), and excellent power conversion efficiency (5.61 %) compared to those characteristics of commercial $Co_3O_4$, conventional CNFs, and metallic Co-seed/CNFs. These results can be described as stemmnig from the synergistic effect of the porous and graphitized matrix formed by catalytic graphitization using the metal cobalt catalyst on CNFs, which leads to an increase in the catalytic activity for the reduction of triiodide ions. Therefore, octahedral $Co_3O_4$/CNFs composites can be used as a counter electrode for Pt-free dye-sensitized solar cells.

Influence of para-orientating Methoxyl Units on the Electronic Structures and Light Absorption Properties of the Triphenylamine-based dyes by DFT Study

  • Liang, Guijie;Xu, Jie;Xu, Weilin;Wang, Luoxin;Shen, Xiaolin;Yao, Mu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2279-2285
    • /
    • 2011
  • The geometries, electronic structures and absorption spectra of the two organic triphenylamine-based dyes TA-St-CA and TA-DM-CA, containing identical electron donors and acceptors but the different conjugated bridges, were studied by density functional theory (DFT) at the B3LYP and PBE1PBE levels, respectively. The influence of para-orientating methoxyl units on the electronic structures and light absorption properties of the dyes and the consequent photovoltaic performance of the dye-sensitized solar cells (DSSCs) were investigated in detail. The results indicate that the introduction of the para-orientating methoxyl units into the conjugated bridge induces the increased absorption wavelength as well as the more negative EHOMO corresponding to the bigger driving force $(E_{I^-/I^-_3}-E_{HOMO})$ for dye reduction, which together improve the photovoltaic performance of TA-DM-CA, although there is a decline of the open circuit voltage caused by the more negative $E_{LUMO}$.

Effect of Electrochemical Properties and Optical Transmittance of Carbon Nanotubes Counter Electrodes on the Energy Conversion Efficiency of Dye-sensitized Solar Cells (염료감응형 태양전지의 탄소나노튜브 상대전극의 광투과도와 전기화학적 특성이 에너지 변환 효율에 미치는 영향)

  • Han, Young-Moon;Hwang, Sook-Hyun;Kang, Myung-Hoon;Kim, Young-Joo;Kim, Hyun-Kook;Kim, Sang-Hyo;Bae, Hyo-Jun;Choi, Hyon-Kwang;Jeon, Min-Hyon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.333-339
    • /
    • 2011
  • In this work, electrochemical characteristics and optical transmittance of carbon nanotubes (CNTs) counter electrodes which had different amount of CNTs in CNTs slurries were analyzed. Two-step heat treatment processes were applied to achieve well-fabricated CNTs electrode. Three sets of CNTs electrodes and dye-sensitized solar cells (DSSCs) with CNTs counter electrodes were prepared. As the amount of CNTs increased, sheet resistance of CNTs electrode decreased. CNTs electrode with low sheet resistance had low electrochemical impedance and fast redox reaction. On the other hand, in case of CNTs counter electrode with low density of CNTs, performance of the dye-sensitized solar cell was improved due to its high optical transmittance. We found that the transmittance of CNTs counter electrode influence the performance of dye-sensitized solar cells.

Novel Extended π-Conjugated Dendritic Zn(II)-porphyrin Derivatives for Dye-sensitized Solar Cell Based on Solid Polymeric Electrolyte: Synthesis and Characterization

  • Kang, Min-Soo;Oh, Jae-Buem;Roh, Soo-Gyun;Kim, Mi-Ra;Lee, Jin-Kook;Jin, Sung-Ho;Kim, Hwan-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.33-40
    • /
    • 2007
  • We have designed and synthesized three Zn(II)-porphyrin derivatives, such as Zn(II) porphyrin ([G-0]Zn-P1) and aryl ether-typed dendron substituted Zn(II)-porphyrin derivatives ([G-1]Zn-P1 and [G-1]Zn-P-CN1). Their chemical structures were characterized by 1H-NMR, FT-IR, UV-vis absorption, EI-mass, and MALDI-TOF mass spectroscopies. Their electrochemical properties were studied by cyclic voltammetry measurement. These Zn(II)-porphyrin derivatives have been used to fabricate dye-sensitized solar cells (DSSCs) based on solid polymeric electrolytes as dye sensitizers and their device performances were evaluated by comparing with that of a standard Ru(II) complex dye. [G-1]Zn-P-CN1 showed the enhanced power conversion efficiency than those of other porphyrin derivatives, as expected. Short-circuit photocurrent density (Jsc), open-circuit voltage (Voc), fill factor (FF), and power conversion efficiency (η) of solid-typed DSSC for [G-1]Zn-P-CN1 were evaluated to be Jsc = 11.67 mA/cm2, Voc = 0.51 V, FF = 0.46, and η = 2.76%, respectively.

Effect of Dispersion Control of Multi-walled Carbon Nanotube in High Filler Content Nano-composite Paste for the Fabrication of Counter Electrode in Dye-sensitized Solar Cell (다중벽 탄소 나노튜브 기반 고충전 나노복합 페이스트를 이용한 염료 감응 태양 전지용 상대 전극의 제조에 있어서 분산 제어의 효과)

  • Park, So Hyun;Hong, Sung Chul
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.470-477
    • /
    • 2013
  • Multi-walled carbon nanotube (MWCNT) based nano-composite pastes having a high filler content are prepared for the facile fabrication of a counter electrode (CE) of dye-sensitized solar cell (DSSC). A polystyrene-based functional block copolymer is prepared through a controlled "living" radical polymerization technique, affording a surface modifier for the dispersion control of MWCNT in the paste. Physical dispersion through a ball-milling method additionally confirms the importance of the dispersion control, providing DSSC with enhanced processibility and improved solar-to-electricity energy conversion efficiency (${\eta}$) values. The performances of the DSSCs are further improved through the incorporation of minor amount of platinum (Pt) nanoparticles into the MWCNT pastes. The DSSC with the Pt/MWCNT hybrid CE exhibits very high ${\eta}$ values, which is superior to that of DSSC with the standard Pt CE.