DOI QR코드

DOI QR Code

Effect of Electrochemical Properties and Optical Transmittance of Carbon Nanotubes Counter Electrodes on the Energy Conversion Efficiency of Dye-sensitized Solar Cells

염료감응형 태양전지의 탄소나노튜브 상대전극의 광투과도와 전기화학적 특성이 에너지 변환 효율에 미치는 영향

  • Han, Young-Moon (Department of Nano Systems Engineering, Inje University) ;
  • Hwang, Sook-Hyun (Department of Nano Systems Engineering, Inje University) ;
  • Kang, Myung-Hoon (Department of Nano Systems Engineering, Inje University) ;
  • Kim, Young-Joo (Department of Nano Systems Engineering, Inje University) ;
  • Kim, Hyun-Kook (Department of Nano Systems Engineering, Inje University) ;
  • Kim, Sang-Hyo (Department of Nano Systems Engineering, Inje University) ;
  • Bae, Hyo-Jun (Department of Nano Systems Engineering, Inje University) ;
  • Choi, Hyon-Kwang (Department of Nano Systems Engineering, Inje University) ;
  • Jeon, Min-Hyon (Department of Nano Systems Engineering, Inje University)
  • 한영문 (인제대학교 나노시스템공학과) ;
  • 황숙현 (인제대학교 나노시스템공학과) ;
  • 강명훈 (인제대학교 나노시스템공학과) ;
  • 김영주 (인제대학교 나노시스템공학과) ;
  • 김현국 (인제대학교 나노시스템공학과) ;
  • 김상효 (인제대학교 나노시스템공학과) ;
  • 배효준 (인제대학교 나노시스템공학과) ;
  • 최현광 (인제대학교 나노시스템공학과) ;
  • 전민현 (인제대학교 나노시스템공학과)
  • Received : 2010.12.16
  • Accepted : 2011.03.13
  • Published : 2011.04.01

Abstract

In this work, electrochemical characteristics and optical transmittance of carbon nanotubes (CNTs) counter electrodes which had different amount of CNTs in CNTs slurries were analyzed. Two-step heat treatment processes were applied to achieve well-fabricated CNTs electrode. Three sets of CNTs electrodes and dye-sensitized solar cells (DSSCs) with CNTs counter electrodes were prepared. As the amount of CNTs increased, sheet resistance of CNTs electrode decreased. CNTs electrode with low sheet resistance had low electrochemical impedance and fast redox reaction. On the other hand, in case of CNTs counter electrode with low density of CNTs, performance of the dye-sensitized solar cell was improved due to its high optical transmittance. We found that the transmittance of CNTs counter electrode influence the performance of dye-sensitized solar cells.

Keywords

References

  1. B. O’Regan, and M. Gratzel, Nature 353, 737 (1991). https://doi.org/10.1038/353737a0
  2. Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Gratzel, J. Phys. Chem. B, 107, 8981 (2003). https://doi.org/10.1021/jp022656f
  3. S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori, and S. Yanagida, J. Phys. Chem. B, 106, 10004 (2002). https://doi.org/10.1021/jp020051d
  4. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, Jpn. J. Appl. Phys., 45, 638 (2006). https://doi.org/10.1143/JJAP.45.638
  5. S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Gratzel, M. K. Nazeeruddin, and M. Gratzel, Thin Solid Films, 516, 4613 (2008). https://doi.org/10.1016/j.tsf.2007.05.090
  6. W. J. Lee, E. Ramasamy, D. Y. Lee, and J. S. Song, Applied Materials & Interfaces, 1, 1145 (2009). https://doi.org/10.1021/am800249k
  7. J. G. Nam, Y. J. Park, B. S. Kim, and J. S. Lee, Scripta Materialia, 62, 148 (2010). https://doi.org/10.1016/j.scriptamat.2009.10.008
  8. J. Han, H. Kim, D. Y. Kim, S. M. Jo, and S. Jang, ACS Nano, 4, 3503 (2010). https://doi.org/10.1021/nn100574g
  9. J. Bonard, F. Maier, T. Stockli, A. Chatelain, W. A. Heer, J. Salvetat, and L. Forro, Ultramicroscopy, 73, 7 (1998). https://doi.org/10.1016/S0304-3991(97)00129-0
  10. J. E. Trancik, S. C. Barton, and J. Hone, Nano Lett., 8, 982 (2008). https://doi.org/10.1021/nl071945i
  11. W. J. Lee, D. Y. Lee, I. S. Kim, S. J. Jeong, and J. S. Song, Trans. Electr Electron. Mater., 6, 140 (2005). https://doi.org/10.4313/TEEM.2005.6.4.140
  12. S. I. Cha, B. K. Koo, S. H. Seo, and D. Y. Lee, J. Mater. Chem., 20, 659 (2010). https://doi.org/10.1039/b918920c
  13. M. Kang, Y. Han, H. Choi, and M. Jeon, Electron.. Lett., 46, 1509 (2010). https://doi.org/10.1049/el.2010.2606
  14. C. C. Ting, and W. S. Chao, Applied Energy, 87, 2500 (2010). https://doi.org/10.1016/j.apenergy.2010.02.024
  15. T. Ma, X. Fang, M. Akiyama, K. Inoue, H. Noma, and E. Abe, J. Electroanal Chem., 574, 77 (2004). https://doi.org/10.1016/j.jelechem.2004.08.002
  16. L. Han, N. Koide, Y. Chiba, and T. Mitate, Appl. Phys. Lett., 84, 2433 (2004). https://doi.org/10.1063/1.1690495
  17. L. Han, N. Koide, Y. Chiba, A. Islam, R. Komiya, N. Fuke, A. Fukui, and R. Yamanaka, Appl.. Phys. Lett., 86, 213501 (2005). https://doi.org/10.1063/1.1925773
  18. L. Han, N. Koide, Y. Chiba, A. Islam, and T. Mitate, C. R. Chimie, 9, 645 (2006). https://doi.org/10.1016/j.crci.2005.02.046
  19. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, PNAS, 106, 6044 (2008).
  20. E. Ramasamy, W. J. Lee, D. Y. Lee, and J. S. Song, Electrachem Commun, 10, 1087 (2008). https://doi.org/10.1016/j.elecom.2008.05.013
  21. J. Yoon and K. Ryu, Karen Information Center News, 11, 15 (2008).