• 제목/요약/키워드: DSSCs

검색결과 214건 처리시간 0.025초

염료감응형 태양전지용 질산 전처리된 $TiO_2$ 광전극의 전기화학적 특성 (Electrochemical Properties of HNO3 Pre-treated $TiO_2$ Photoelectrode for Dye-SEnsitized Solar Cells)

  • 박경희;김은미;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.441-441
    • /
    • 2009
  • Dye-sensitized solar cells (DSSCs) have been widely investigated as a next-generation solar cell because of their simple fabrication process and low coats. The cells use a porous nanocrystalline TiO2 matrix coated with a sensitizer dye that acts as the light-harvesting element. The photo-exited dye injects electrons into the $TiO_2$ particles, and the oxide dye reacts with I- in the electrolyte in regenerative cycle that is completed by the reduction of $I_3^-$ at a platinum-coated counter electrode. Since $TiO_2$ porous film plays a key role in the enhancement of photoelectric conversion efficiency of DSSC, many scientists focus their researches on it. Especially, a high light-to-electricity conversion efficiency results from particle size and crystallographic phase, film porosity, surface structure, charge and surface area to volume ratio of porous $TiO_2$ electrodes, on which the dye can be sufficiently adsorbed. Effective treatment of the photoanode is important to improve DSSC performance. In this paper, to obtain properties of surface and dispersion as nitric acid treated $TiO_2$ photoelectrode was investigate. The photovoltaic characteristics of DSSCs based the electrode fabricated by nitric acid pre-treatment $TiO_2$ materials gave better performances on both of short circuit current density and open circuit voltage. We compare dispersion of $TiO_2$ nanoparticles before and after nitric acid treatment and measured Ti oxidized state from XPS. Low charge transfer resistance was obtained in nitric acid treated sample than that of untreated sample. The dye-sensitized solar cell based on the nitric acid treatment had open-circuit voltage of 0.71 V, a short-circuit current of 15.2 mAcm-2 and an energy conversion efficiency of 6.6 % under light intensity of $100\;mWcm^{-2}$. About 14 % increases in efficiency obtained when the $TiO_2$ electrode was treated by nitric acid.

  • PDF

산처리된 페이스트로 제조한 나노 구조체 TiO2 전극이 염료감응형 태양전지의 효율에 미치는 영향 (Influence of Nanostructured TiO2 Electrode Fabricated with Acid-treated Paste on the Photovoltaic Efficiency of Dye-Sensitized Solar Cells)

  • 이재욱;황경준;노성희;김선일
    • 공업화학
    • /
    • 제18권4호
    • /
    • pp.356-360
    • /
    • 2007
  • 나노 다공질 $TiO_2$ 전극막, 광 감응형 염료, 전해질 그리고 상대전극으로 구성된 염료감응형 태양전지(Dye-Sensitized Solar Cells, DSSCs)는 최근에 많은 관심을 받아오고 있다. 염료감응형 태양전지에서 $TiO_2$ 전극막은 태양광의 흡수량을 증가시키기 위해 가능한 많은 양의 Ru 착물을 표면에 흡착시켜야 하는데 이를 위해 높은 비표면적과 나노 다공성 입자로 구성된 광전극이 요구된다. 또한 에너지 전환 효율을 증가시키기 위한 방법으로 $TiO_2$ 페이스트의 제작시 산을 첨가 후 열처리하는 방법이 보고되고 있다. 이 논문에서는 산이 첨가된 페이스트로 제조한 $TiO_2$ 광전극이 염료감응형 태양전지의 에너지 변환 효율에 미치는 영향을 체계적으로 이해하기 위해 FE-SEM, XPS, EXAFS 그리고 AFM 등을 이용하여 제조된 광전극의 물리적 화학적 특성을 조사하였다. 또한 광전류-전압 곡선으로부터 산처리된 페이스트를 이용하여 제조한 염료감응형 태양전지의 에너지 전환효율을 평가하였다. 산처리된 페이스는 염료감응형 태양전지의 에너지 전환효율에 크게 영향을 미침을 알 수 있었다.

Zinc Borosilicate Thick Films as a Ag-Protective Layer for Dye-Sensitized Solar Cells

  • Yeon, Deuk-Ho;Lee, Eun-Young;Kim, Kyung-Gon;Park, Nam-Gyu;Cho, Yong-Soo
    • 한국세라믹학회지
    • /
    • 제46권3호
    • /
    • pp.313-316
    • /
    • 2009
  • A zinc borosilicate glass having a low softening temperature of $490^{\circ}C$ has been investigated as a protective layer for Ag patterns against chemical reactions with a $I^-/I_3^-$ electrolyte in dye-sensitized solar cells (DSSCs). A thick glass layer was prepared by the typical screen printing and firing processes to obtain a final thickness of ${\sim}5{\mu}m$. The chemical leaching performance of the glass layer in the electrolyte revealed that the reactive Ag pattern can be significantly protected by utilizing the low softening protective layer. The electrical resistance of the FTO-coated glass substrate was effectively maintained at a low value of ${\sim}27{\Omega}$ as long as the glass layer was well densified at a sufficiently high temperature of ${\sim}520^{\circ}C$. The transmittance of the layer was near 60%, depending on the firing temperature of the glass layer.

1차원 구조를 가지는 육티탄산 나트륨의 염료감응형 태양전지 음극재 사용 가능성 평가 (Feasibility Test of One-Dimensional Sodium Hexatitanate as an Anode Material in Dye-Sensitized Solar Cells)

  • 바더마;오광중;조국
    • 한국전기전자재료학회논문지
    • /
    • 제28권5호
    • /
    • pp.338-343
    • /
    • 2015
  • Dye sensitized solar cells (DSSCs), which is one of the contending renewable energy sources, have the problem of low efficiency. To improve the efficiency, the fast electron transport and long electron lifetime are required. In this study, one-dimensional sodium hexatitanate, which is expected to have an advantageous structure for electron transports, was synthesized and the feasibility of the material on DSSC was tested. Its physical properties were characterized by the SEM, XRD, and BET method. The dye adsorption and solar cell properties were also characterized. In addition to the expectation of fast electron transport, sodium hexatitanate showed longer electron lifetime: This means sodium hexatitanate can improve the DSSC efficiency. However, it showed low current and voltage because of the low surface area leading to the low amount of dye adsorbed. Therefore, it should be mixed with titanium oxide with high surface area for the optimal performance.

장 파장 대 태양광을 흡수하는 염료감응형태양전지에 대한 염료와 합성 (Synthesis and Photovoltaic Performance of Long Wavelength Absorption Dyes for the Dye Sensitized Solar Cell)

  • 김상아;윤주영;김재홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.89.2-89.2
    • /
    • 2010
  • The dye-sensitized solar cell (DSSC) is a device for the conversion of visible light into electricity, based on the sensitization of wide bandgap semiconductors. The performance of the cell mainly depends on a dye used as sensitizer. The absorption spectrum of the dye and the anchorage of the dye to the surface of $TiO_2$ are important parameters determining the efficiency of the cell. Generally, transition metal coordination compounds(ruthenium polypyridyl complexes) are used as the effective sensitizers, due to their intense charge-transfer absorption in the whole visible range and highly efficient metal-to ligand charge transfer. However, ruthenium polypyridyl complexes contain a heavy metal, which is undesirable from point of view of the environmental aspects. Moreover, the process to synthesize the complexes is complicated and costly. Alternatively, organic dyes can be used for the same purpose with an acceptable efficiency. The advantages of organic dyes include their availability and low cost. We designed and synthesized a series of organic sensitizers containing long wavelength absorption-chromophores for the dye sensitized solar cell. The DSSC composed of Blue-chromophores for the sensitization absorbed long wavelength region which is different also applied into the dye-cocktail (mixing) system. The photovoltaic property of DSSCs organic long wavelength absorption-chromophores were measured and evaluated by comparison with that of individual chromophores.

  • PDF

$TIO_2$ 전극의 소결온도에 따른 DSSCS 제조 및 성격 (Preparation and characterization of $TiO_2$ Thin Film By Various temperature)

  • 김성진;박헌균
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.95.2-95.2
    • /
    • 2010
  • 염료감응형 태양전지의 효율을 향상을 시키기 위하여, 이산화티타니아박막을 doctor-blade 방법으로 FTO 기판위에 15-16um 코팅을 한뒤, 다른 온도의 $400^{\circ}C-600^{\circ}C$ 범위에서, 소결을 하였다. 상대전극은 FTO 기판위에 5Ml의 Pt용액을 가지고, $450^{\circ}C$온도에서 제작을 하였다. 실험의 결과 이산화티타니아의 표면거칠기 및 입자사이즈의 소결의 형상에 따라 DSSC의 효율의 상관관계가 영향을 받았다. 표면의 형상은 AFM으로 측정을 하였으며, 표면의 단차가 RMS의 값이 7nm이하 일 때, 효율의 향상을 이루었다. 실험결과 $500^{\circ}C$ 이하일 때, 상대적으로 낮은 open circuit voltage를 이루었으며, 낮은 Fill-factor를 이루었다. $500^{\circ}C$이상의 온도에서는 상대적으로 높은 high circuit voltage와 높은 fill factor를 나타내었다. 실험결과 $500^{\circ}C$에서 소결된 전극을 가진 DSSC가 단락의 전압과 개방전류가 상호보완된 적정값을 가져 가장 개선된 FF와 Eff를 나타내었다. 이와 같은 특성은 이산화티타니아의 준위 모식도에서 설명이 될수 있고, 이산화티타니아의 최적의 necking 및 pore, 입자크기등이 제어될수 있음을 의미한다.

  • PDF

Fabrication of Flexible Solid-state Dye-sensitized $TiO_2$ Nanotube Solar Cell Using UV-curable NOA

  • 박익재;박상백;김주성;진경석;홍국선
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.396-396
    • /
    • 2012
  • $TiO_2$ anatase nanotube arrays (NTAs) were grown by electrochemical anodization and followed annealing of Ti foil. Ethylene glycol/$NH_4F$-based organic electrolyte was used for electrolyte solution and using second anodization process to obtain free-standing NTAs. After obtaining NTAs, ITO film was deposited by sputtering process on bottom of NTAs. UV-curable NOA was used for attach free-standing NTAs on flexible plastic substrate (PEN). Solid state electrolyte (spiro-OMeTAD) was coated via spin-coating method on top of attached NTAs. Ag was deposited as a counter electrode. Under AM 1.5 simulated sunlight, optical characteristics of devices were investigated. In order to use flexible polymer substrate, processes have to be conducted at low temperature. In case of $TiO_2$ nano particles (NPs), however, crystallization of NPs at high temperature above $450^{\circ}C$ is required. Because NTAs were conducted high temperature annealing process before NTAs transfer to PEN, it is favorable for using PEN as flexible substrate. Fabricated flexible solid-state DSSCs make possible the preventing of liquid electrolyte corrosion and leakage, various application.

  • PDF

Light Scattering Amplification on Dye Sensitized Solar Cells Assembled by Hollyhock-shaped CdS-TiO2 Composites

  • Lee, Ga-Young;Lee, Hu-Ryul;Um, Myeong-Heon;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.3043-3047
    • /
    • 2012
  • To investigate the scattering layer effect of a $TiO_2$ multilayer in dye-sensitized solar cells (DSSCs), we designed a new DSSC system, assembled with a CdS-$TiO_2$ scattering layer electrode. A high-magnification SEM image exhibited hollyhock-like particles with a width of 1.5-2.0 ${\mu}m$ that were aggregated into 10-nm clumps in a hexagonal petal shape. The efficiency was higher in the DSSC assembled with a CdS-$TiO_2$ scattering layer than in the DSSC assembled with $TiO_2$-only layers, due to the decreased resistance in electrochemical impedance spectroscopy (EIS). The short-circuit current density ($J_{sc}$) was increased by approximately 7.26% and the open-circuit voltage ($V_{oc}$) by 2.44% over the 1.0 wt % CdS-$TiO_2$ composite scattering layer and the incident photon-to-current conversion efficiency (IPCE) in the maximum peak was also enhanced by about 5.0%, compared to the DSSC assembled without the CdS-$TiO_2$scattering layer.

Effect of Titanium Nanorods in the Photoelectrode on the Efficiency of Dye Sensitized Solar Cells

  • Rahman, Md. Mahbubur;Kim, Hyun-Yong;Jeon, Young-Deok;Jung, In-Soo;Noh, Kwang-Mo;Lee, Jae-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권9호
    • /
    • pp.2765-2768
    • /
    • 2013
  • The effect of $TiO_2$ nanorods (TNR) and nanoparticles (TNP) composite photoelectrodes and the role of TNR to enhance the energy conversion efficiency in dye-sensitized solar cells (DSSCs) was investigated. The 5% TNR content into the TNP photoelectrode significantly increased the short-circuit current density ($J_{sc}$) and the open-circuit potential ($V_{oc}$) with the overall energy conversion efficiency enhancement of 13.6% compared to the pure TNP photoelectrode. From the photochemical and impedemetric analysis, the increased $J_{sc}$ and $V_{oc}$ for the 5% TNR/TNP composite photoelectrode was attributed to the scattering effect of TNR, reduced electron diffusion path and the suppression of charge recombination between the composite photoelectrode and electrolyte or dye.

졸겔법을 통한 TiO2 합성 및 pH에 따른 DSSC의 전기화학적 특성 (Synthesis of TiO2 by Sol-gel Method and Electrochemical Properties of DSSCs with Controlling pH)

  • 박아름;김선훈;김두근;구할본;기현철
    • 한국전기전자재료학회논문지
    • /
    • 제25권8호
    • /
    • pp.620-625
    • /
    • 2012
  • The sol-gel method has been widely used to synthesize the $TiO_2$ for dye sensitized solar cells and has advantages of easily fabrication process, controlling the $TiO_2$ phase and getting transparent thin-film composed of the $TiO_2$. In this paper, we synthesized the crystalline $TiO_2$ by sol-gel method controlled by the quantity ratio of Nitric acid and Ammonium hydroxide additives. The best efficiency result was obtained by 0.05 M Ammonium hydroxide and that results of Voc, Jsc, FF, and efficiency were 0.68 V, 3.28 mA/$cm_2$, 58.14 and 5.21%, respectively.