DOI QR코드

DOI QR Code

Effect of Titanium Nanorods in the Photoelectrode on the Efficiency of Dye Sensitized Solar Cells

  • Rahman, Md. Mahbubur (Department of Advanced Technology Fusion, Konkuk University) ;
  • Kim, Hyun-Yong (ENBKOREA Co. LTD.) ;
  • Jeon, Young-Deok (Nanotechnology Research Center & Department of Applied Chemistry, Konkuk University) ;
  • Jung, In-Soo (Nanotechnology Research Center & Department of Applied Chemistry, Konkuk University) ;
  • Noh, Kwang-Mo (Nanotechnology Research Center & Department of Nano Science and Mechatronics Engineering, Konkuk University) ;
  • Lee, Jae-Joon (Department of Advanced Technology Fusion, Konkuk University)
  • Received : 2013.04.23
  • Accepted : 2013.06.26
  • Published : 2013.09.20

Abstract

The effect of $TiO_2$ nanorods (TNR) and nanoparticles (TNP) composite photoelectrodes and the role of TNR to enhance the energy conversion efficiency in dye-sensitized solar cells (DSSCs) was investigated. The 5% TNR content into the TNP photoelectrode significantly increased the short-circuit current density ($J_{sc}$) and the open-circuit potential ($V_{oc}$) with the overall energy conversion efficiency enhancement of 13.6% compared to the pure TNP photoelectrode. From the photochemical and impedemetric analysis, the increased $J_{sc}$ and $V_{oc}$ for the 5% TNR/TNP composite photoelectrode was attributed to the scattering effect of TNR, reduced electron diffusion path and the suppression of charge recombination between the composite photoelectrode and electrolyte or dye.

Keywords

References

  1. Gratzel, M. Nature 2001, 414, 338. https://doi.org/10.1038/35104607
  2. Wu, J. H.; Lan, Z.; Lin, J. M.; Huang, M.; Hao, S.; Sato, T.; Yin, S. Adv. Mater. 2007, 19, 4006. https://doi.org/10.1002/adma.200602886
  3. Lee, J.-J.; Rahman, M. M.; Sarker, S.; Nath, N. C. D.; Ahammad, A. J. S.; Lee, J. K. In Composite Materials for Medicine and Nanotechnology; Attaf, B., Ed.; InTech: Croatia, 2011; p 181.
  4. Rahman, M. M.; Son, H.-S.; Lim, S.-S.; Chung, K.-H.; Lee, J.-J. J. Electrochem. Sci. Technol. 2011, 2, 110. https://doi.org/10.5229/JECST.2011.2.2.110
  5. Wang, Z. S.; Kawauchi, H.; Kashima, T.; Arakawa, H. Coord. Chem. Rev. 2004, 248, 1381. https://doi.org/10.1016/j.ccr.2004.03.006
  6. Gong, D.; Grimes, C. A.; Varghese, O.; Hu, W.; Singh, R. S.; Chen, Z.; Dickey, E. C. J. Mater. Res. 2001, 16, 3331. https://doi.org/10.1557/JMR.2001.0457
  7. Chung, K.-H.; Rahman, M. M.; Son, H.-S.; Lee, J.-J. Int. J. Photoenergy 2012, 2012, Article ID 215802, 6 pages.
  8. Song, K.; Jang, I.; Oh, S.-G. Bull. Korean Chem. Soc. 2013, 34, 355. https://doi.org/10.5012/bkcs.2013.34.2.355
  9. Jiu, J.; Isoda, S.; Wang, F.; Adachi, M. J. Phys. Chem. B 2006, 110, 2087. https://doi.org/10.1021/jp055824n
  10. Yang, L.; Leung, W. W.-F. Adv. Mater. 2011, 23, 4559. https://doi.org/10.1002/adma.201102717
  11. Macak, J. M.; Zlamal, M.; Krysa, J.; Schmuki, P. Small 2007, 3, 300. https://doi.org/10.1002/smll.200600426
  12. Kontos, A. I.; Kontos, A. G.; Tsoukleris, D. S.; Bernard, M.-C.; Spyrellis, N.; Falaras, P. J. Mater. Process. Technol. 2008, 196, 243. https://doi.org/10.1016/j.jmatprotec.2007.05.051
  13. Bruggemann, B.; Organero, J. A.; Pascher, T.; Pullerits, T.; Yartsev, A. Phys. Rev. Lett. 2006, 97, Article ID 208301, 4 pages.
  14. Mohamed, A. E. R.; Rohani, S. Energy Environ. Sci. 2011, 4, 1065. https://doi.org/10.1039/c0ee00488j
  15. Adachi, M.; Sakamoto, M.; Jiu, J.; Ogata, Y.; Isoda, S. J. Phys. Chem. B 2006, 110, 13872. https://doi.org/10.1021/jp061693u
  16. Yu, Z.; Vlachopoulos, N.; Gorlov, M.; Kloo, L. Dalton Trans. 2011, 40, 10289. https://doi.org/10.1039/c1dt11023c
  17. Pommer, E. E.; Liu, B.; Aydil, E. S. Phys. Chem. Chem. Phys. 2009, 1, 9648.

Cited by

  1. Enhanced photoresponse in dye-sensitized solar cells via localized surface plasmon resonance through highly stable nickel nanoparticles vol.8, pp.11, 2016, https://doi.org/10.1039/C5NR08155F