• 제목/요약/키워드: DSSCs

검색결과 213건 처리시간 0.02초

Novel Pyridinium Iodide Containing Siloxane High Performance Electrolyte for Dye-Sensitized Solar Cell

  • Lee, Soonho;Jeon, Youngtae;Lim, Youngdon;Cho, Younggil;Lee, Sangyoung;Kim, Whangi
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권9호
    • /
    • pp.2583-2588
    • /
    • 2013
  • A new type of solid and gel-state ionics based on siloxane pyridinium iodides was synthesized and used as electrolytes in dye-sensitized solar cells. The resulting electrolytes were characterized by $^1H$ NMR spectroscopy, TGA and diffusion coefficient. The synthesized siloxane pyridinium iodide electrolytes have characteristics of different chain length of siloxane moieties. The ion conductivities were given 2.7-3.2 S/cm. Among the three SiDPIs based electrolytes, DSSC employing the SiDPI2 gives an open circuit voltage of 0.704 V, a short-circuit current of 15.85 $mA/cm^2$ and conversion efficiency of 6.8% under light intensity of 100 $mW/cm^2$. In addition, the performance of the DSSCs showed relatively reasonable compared with the propylpyridinium iodide (PPI) electrolyte.

TiO2 Paste에 PEG 첨가에 따른 DSSC의 효율 특성 (DSSCs Efficiencies of PEG Additive In TiO2 Paste)

  • 권성열;양욱;장자항
    • 한국전기전자재료학회논문지
    • /
    • 제27권11호
    • /
    • pp.746-752
    • /
    • 2014
  • Photo electrode is an important component of DSSC, so this paper did some research on it. Through the method of adding PEG additive into $TiO_2$ paste, the electrical characteristics and efficiencies of DSSCs with photo electrode surface area were studied. In the case of not adding PEG in $TiO_2$ paste, $26{\mu}m$ thickness $TiO_2$ photo electrode shows 5.081% efficiency. The highest short circuit current density was $10.476mA/cm2^$. The structure of porous $TiO_2$ film can be controlled through changing the PEG additive amount in $TiO_2$ paste and the molecular weight of PEG. When the additive amount of PEG 20,000 in $TiO_2$ paste reaches 5%, the peak efficiency with $26{\mu}m$ thickness $TiO_2$ photo electrode was 5.387% and its highest current density were $11.084mA/cm^2$.

A Comparative Study on the Various Blocking Layers for Performance Improvement of Dye-sensitized Solar Cells

  • Woo, Jong-Su;Jang, Gun-Eik
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권6호
    • /
    • pp.312-316
    • /
    • 2013
  • In this study, short-circuit preventive layer (blocking layer) was deposited between conductive transparent electrode and porous $TiO_2$ film in the DSSCs. As blocking layer, we selected the metal-oxide such as $TiO_2$, $Nb_2O_5$ and ZnO. The sheet resistance with each different blocking layers were 18 ${\Omega}/sq.$ for the $TiO_2$, 10 ${\Omega}/sq.$ for the $Nb_2O_5$ and 8 ${\Omega}/sq.$ for the ZnO, while the RMS (Root Mean Square) roughness value of DSSCs were 39.61 nm for the $TiO_2$, 41.84 nm for the $Nb_2O_5$ and 36.14 nm for the ZnO respectively. From the results of photocurrent-voltage curves, a sputtered $Nb_2O_5$ blocking layer showed higher performance on 2.64% of photo-electrochemical properties. The maximum of conversion efficiency which was achieved under 1 sun irradiation by depositing the blocking layer increased up to 0.56%.

CNT와 Pt 상대전극을 가지는 염료감응형 태양전지의 직렬 ${\cdot}$ 병렬 연결에 따른 특성비교 (Comparative properties for serial-parallel connection of DSC with CNT and pt counter electrodes)

  • 최진영;홍지태;김미정;이용철;김희제
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.335-338
    • /
    • 2007
  • Cost effectiveness is an important parameter for producing DSSCs as compared to the widely used conventional silicon based solar cells. A fluorine-doped tin oxide (FTO) substrate coated with a catalytic amount of platinum is used as counter electrode in dye-sensitized solar cell. Carbonaceous materials are quite attractive to replace platinum due to their high electronic conductivity, corrosion resistance towards $I_{2}$, good catalytic effect and low cost. In this paper, the unit DSSCs with Pt and CNT as a counter electrode were connected in series-parallel externally, then the current-voltage curves were investigated to find out the connection characteristics of the DSSC with CNT counter electrode. The connection characteristics of the DSSC with CNT counter electrode is superior to that of the DSSC with Pt counter electrode. And a parallel connection of the DSSC with CNT counter electrode has higher efficiency than a series connection of that.

  • PDF

Evaluation of thermally and chemically reduced graphene oxide films as counter electrodes on dye-sensitized solar cells

  • Rodriguez-Perez, Manuel;Villanueva-Cab, Julio;Pal, Umapada
    • Advances in nano research
    • /
    • 제5권3호
    • /
    • pp.231-244
    • /
    • 2017
  • Graphene oxide (GO) was prepared by modified Hummer's method to produce reduced graphene oxide (RGO) following standard thermal and chemical reduction processes. Prepared RGO colloids were utilized to fabricate RGO films over glass and FTO coated glass substrates through drop-coating. A systematic study was performed to evaluate the effect of reduction degree on the optical and electrical properties of the RGO film. We demonstrate that both the reduction process (thermal and chemical) produce RGO films of similar optical and electrical behaviors. However, the RGO films fabricated using chemically reduced GO colloid render better performance in dye sensitized solar cells (DSSCs), when they are used as counter electrodes (CEs). It has been demonstrated that RGO films of optimum thicknesses fabricated using RGO colloids prepared using lower concentration of hydrazine reducer have better catalytic performance in DSSCs due to a better catalytic interaction with redox couple. The better catalytic performance of the RGO films fabricated at optimal hydrazine concentration is associated to their higher available surface area and lower grain boundaries.

Synthesis of Zr-incorporated TiO2 Using a Solvothermal Method and its Photovoltaic Efficiency on Dye-sensitized Solar Cells

  • Kim, Su-Jung;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권9호
    • /
    • pp.3317-3322
    • /
    • 2011
  • This study examines the photoelectric conversion efficiency of dye-sensitized solar cells (DSSCs) when nanometer-sized Zr (0.1, 0.5, and 1.0 mol %)-$TiO_2$ prepared using a solvothermal method is utilized as the working electrode material. The particle sizes observe in the transmission electron microscopy (TEM) images are < 30 nm in all samples. The absorption band is slightly broadened at the tail for the 0.1 mol % Zr-$TiO_2$, and the intensity of the photoluminescence (PL) curves of the Zr-incorporated $TiO_2$ is significantly smaller than that of the pure $TiO_2$. Compared to that using pure $TiO_2$, the energy conversion efficiency is enhanced considerably by the application of Zr-$TiO_2$ in the DSSCs to approximately 6.17% for 0.5 mol % Zr-$TiO_2$ with the N719 dye (10.0 ${\mu}m$ film thickness and 5.0 mm ${\times}$ 5.0 mm cell area) under 100 mW/$cm^2$ of simulated sunlight.

Quasi-Solid-State Polymer Electrolytes Based on a Polymeric Ionic Liquid with High Ionic Conductivity and Enhanced Stability

  • Jeon, Nawon;Jo, Sung-Geun;Kim, Sang-Hyung;Park, Myung-Soo;Kim, Dong-Won
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권3호
    • /
    • pp.257-264
    • /
    • 2017
  • A polymeric ionic liquid, poly(1-methyl 3-(2-acryloyloxypropyl) imidazolium iodide) (PMAPII), was synthesized as a single-iodide-ion-conducting polymer and employed in a gel polymer electrolyte. Gel polymer electrolytes prepared from iodine, 4-tert-butylpyridine, ${\gamma}$-butyrolactone, and PMAPII were applied in quasi-solid-state dye-sensitized solar cells (DSSCs). The addition of 16 wt.% PMAPII provided the most favorable environment, striking a compromise between the iodide ion concentration and the ionic mobility, which resulted in the highest conversion efficiency of the resulting DSSCs. The quasi-solid-state DSSC assembled with the optimized gel polymer electrolyte exhibited a relatively high conversion efficiency of 7.67% under AM 1.5 illumination at $100mA\;cm^{-2}$ and better stability than that of the DSSC with a liquid electrolyte.

Improved Conversion Efficiency of Dye-sensitized Solar Cells Based on TiO2 Porous Layer Coated TiO2 Nanotubes on a Titanium Mesh Substrate as Photoanode

  • Lim, Jae-Min;He, Weizhen;Kim, Hyung-Kook;Hwang, Yoon-Hwae
    • Current Photovoltaic Research
    • /
    • 제1권2호
    • /
    • pp.90-96
    • /
    • 2013
  • We report here flexible dye-sensitized solar cells (DSSC) based on Ti-mesh electrodes that show good mechanical flexibility and electrical conductivity. $TiO_2$ nanotube arrays prepared by electrochemical anodizing Ti-mesh substrate were used as photoanode. A Pt-coated Ti-mesh substrate was used as counter electrode. The photoanodes were modified by coating a $TiO_2$ porous layer onto the $TiO_2$ nanotubes in order to increase the specific surface area. To increase the long term stability of the DSSCs, a gel type electrolyte was used instead of a conventional liquid type electrolyte. The DSSC based on $33.2{\mu}m$ long porous $TiO_2$ nanotubes exhibited a better energy conversion efficiency of ~2.33%, which was higher than that of the DSSCs based on non-porous $TiO_2$ nanotubes.

Electrocatalytic Activity of Sulfamic Acid Doped Polyaniline Nanofiber Counter Electrode for Dye Sensitized Solar Cell

  • 조철기;;;김영순;양오봉;신형식
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.385-385
    • /
    • 2009
  • Uniform polyaniline nanofibers (PANI NFs), and chemically doped sulfamic acid(SFA) PANI NFs, synthesized via template free interfacial polymerization process, were used as new counter electrodes materials for the fabrication of the highly-efficient dyesensitized solar cells (DSSCs). The PANI NFs based fabricated DSSCs exhibited a solarto-electricity conversion efficiency of ~ 4.02% while, the SFA doped PANI NFs based DSSC demonstrated ~ 27% improvement in the solar-to-electricity conversion efficiency. The obtained solar-to-electricity conversion efficiency for SFA doped PANI NFs based DSSC was 5.47% under 100mW/$cm^2$(AM1.5). The enhancement in the conversion efficiency was due to the incorporation of SFA into the PANI NFs which resulted to the higher electrocatalytic activity for the $I^{3-}/I^-$ redox reaction.

  • PDF

In Situ Crosslinked Ionic Gel Polymer Electrolytes for Dye Sensitized Solar Cells

  • Shim, Hyo-Jin;Kim, Dong-Wook;Lee, Chang-Jin;Kang, Yong-Ku;Suh, Dong-Hack
    • Macromolecular Research
    • /
    • 제16권5호
    • /
    • pp.424-428
    • /
    • 2008
  • We prepared an ionic gel polymer electrolyte for dye-sensitized solar cells (DSSCs) without leakage problem. Triiodide compound (BTDI) was synthesized by the reaction of benzene tricarbonyl trichloride with diethylene glycol monotosylate and subsequent substitution of tosylate by iodide using NaI. Bisimidazole was prepared by the reaction of imidazole with the triethylene glycol ditosylate under strongly basic condition provided by NaH. BTDI and bisimidazole dissolved in an ionic liquid were injected into the cells and permeated into the $TiO_2$ nanopores. In situ crosslinking was then carried out by heating to form a network structure of poly(imidazolium iodide), thereby converting the ionic liquid electrolytes to a gel or a quasi-solid state. A monomer (BTDI and bisimidazole) concentration in the electrolytes of as low as 30 wt% was sufficient to form a stable gel type electrolyte. The DSSCs based on the gel polymer electrolytes showed a power conversion efficiency of as high as 1.15% with a short circuit current density of $5.69\;mAcm^{-2}$, an open circuit voltage of 0.525 V, and a fill factor of 0.43.