• Title/Summary/Keyword: DSC(Differential scanning calorimetry)

Search Result 679, Processing Time 0.026 seconds

Thermal and Electrical Properties of Poly(vinylidenefluoride-hexafluoropropylene)-based Gel-Electrolytes (Poly(vinylidenefluoride-hexafluoropropylene)계 겔-전해질의 열적, 전기적 특성)

  • 김영완;최병구;안순호
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.382-388
    • /
    • 2000
  • Polymer electrolyte films consisting of poly(vinylidenefluoride-hexafluoropropylene) (PVdF-HFP), LiClO$_3$ and a mixture of ethylene carbonate (EC) and ${\gamma}$-butyrolactone (GBL) were examined in order to obtain the best compromise between high ionic conductivity, homogeniety, dimensional and electrochemical stability. Measurements of ionic conductivity, differential scanning calorimetry and linear sweep voltammetry have been carried out for various compositions. The highest conductivity of 3.8$\times$10$^{-3}$ S$cm^{-1}$ / at 3$0^{\circ}C$ were obtained for a film of 30(PVdF-HFP)+7.8LiClO$_4$+62.2EC/GBL. From the DSC study, it has been found that the PVdF-HFP gels are stable up to 10$0^{\circ}C$, and the salt lowers the melting temperature of crystalline part of PVdF by interacting sensitively with polymer segments. When Lithium metal is in contact with the gel films, it tends to undergo corrosion and the reaction products accumulate resulting in the formation of a passive film on Li electrode. As the aging time progresses, the interfacial resistance increases continuously. Anodic stability is measured to extend up to about 4.5 V vs. Li.

  • PDF

Effects of Cu and Ag Addition on Nanocluster Formation Behavior in Al-Mg-Si Alloys

  • Kim, Jae-Hwang;Tezuka, Hiroyasu;Kobayashi, Equo;Sato, Tatsuo
    • Korean Journal of Materials Research
    • /
    • v.22 no.7
    • /
    • pp.329-334
    • /
    • 2012
  • Two types of nanoclusters, termed Cluster (1) and Cluster (2) here, both play an important role in the age-hardening behavior in Al-Mg-Si alloys. Small amounts of additions of Cu and Ag affect the formation of nanoclusters. Two exothermic peaks were clearly detected in differential scanning calorimetry(DSC) curves by means of peak separation by the Gaussian method in the base, Cu-added, Ag-added and Cu-Ag-added Al-Mg-Si alloys. The formation of nanoclusters in the initial stage of natural aging was suppressed in the Ag-added and Cu-Ag-added alloys, while the formation of nanoclusters was enhanced at an aging time longer than 259.2 ks(3 days) of natural aging with the addition Cu and Ag. The formation of nanoclusters while aging at $100^{\circ}C$ was accelerated in the Cu-added, Ag-added and Cu-Ag-added alloys due to the attractive interaction between the Cu and Ag atoms and the Mg atoms. The influence of additions of Cu and Ag on the clustering behavior during low-temperature aging was well characterized based on the interaction energies among solute atoms and on vacancies derived from the first-principle calculation of the full-potential Korrinaga-Kohn-Rostoker(FPKKR)-Green function method. The effects of low Cu and Ag additions on the formation of nanoclusters were also discussed based on the age-hardening phenomena.

Micro Joining Process Using Solderable Anisotropic Conductive Adhesive (Solderable 이방성 도전성 접착제를 이용한 마이크로 접합 프로세스)

  • Yim, Byung-Seung;Jeon, Sung-Ho;Song, Yong;Kim, Yeon-Hee;Kim, Joo-Heon;Kim, Jong-Min
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.73-73
    • /
    • 2009
  • In this sutdy, a new class ACA(Anisotropic Conductive Adhesive) with low-melting-point alloy(LMPA) and self-organized interconnection method were developed. This developed self-organized interconnection method are achieved by the flow, melting, coalescence and wetting characteristics of the LMPA fillers in ACA. In order to observe self-interconnection characteristic, the QFP($14{\times}14{\times}2.7mm$ size and 1mm lead pitch) was used. Thermal characteristic of the ACA and temperature-dependant viscosity characteristics of the polymer were observed by differential scanning calorimetry(DSC) and torsional parallel rheometer, respectively. A electrical and mechanical characteristics of QFP bonding were measured using multimeter and pull tester, respectively. Wetting and coalescence characteristics of LMPA filler particles and morphology of conduction path were observed by microfocus X-ray inspection systems and cross-sectional optical microscope. As a result, the developed self-organized interconnection method has a good electrical characteristic($2.41m{\Omega}$) and bonding strength(17.19N) by metallurgical interconnection of molten solder particles in ACA.

  • PDF

Influence of Surface Functionalized Waste Tire Ponder on the Thermal and Rheological Properties of Polypropylene/Waste Tire Powder Composite (표면기능화된 폐타이어 분말이 PP/폐타이어분말 복합체의 열 및 유변학적 성질에 미치는 영향)

  • Ryu, Sung-Hun;Shanmugharaj, A.M.;Kim, Jin-Kuk;Ryu, Sung-Hun
    • Elastomers and Composites
    • /
    • v.41 no.1
    • /
    • pp.49-56
    • /
    • 2006
  • The waste tire powder is modified with allylamine in the presence of ultraviolet radiation and the influence of surface modification on the thermal and rheological properties of polypropylene/waste tire powder composites was investigated. X-ray diffraction studies of PP/waste tire powder composite without compatibilizer, such as maleic anhydride-g-polypropylene (MA-PP), shows the increase in peak intensity of ${\beta}$ crystalline peaks, whereas it completely disappears in the presence of the MA-PP. Differential scanning calorimetry results further supported the above fact. The melt viscosities and storage modulus of the composites with modified waste tire powder show higher value than that of composites with unmodified powder and it is attributed to the interaction between amine group on modified powder surface and maleic anhydride of MA-PP.

Solubility and Stability of Melatonin in Propylene glycol and 2-hydroxypropyl-${\beta}$-cyclodextrin vehicles

  • Lee, Beom-Jin;Choi, Han-Gon;Kim, Chong-Kook;Parrott, Keith-A.;Ayres, James-W.;Sack, Robert-L.
    • Archives of Pharmacal Research
    • /
    • v.20 no.6
    • /
    • pp.560-565
    • /
    • 1997
  • The physicochemical properties of melatonin (MT) in propylene glycol (PG) and 2-hydroxypropyl-.betha.-cyclodextrin $(2-HP{\beta}CD)$ vehicles were characterized. MT was endothermally decomposed as determined by differential scanning calorimetry (DSC). Melting point and heat of fusion obtained were $116.9{\pm}0.24^{\circ}C $.and $7249{\pm}217 cal/mol$., respectively. MT as received from a manufacture was very pure, at least 99.9%. The solubility of MT in PG solution increased slowly until reaching 40% PG and then steeply increased. Solubility of MT increased linearly as concentration of $2-HP{\beta}CD$ without PG INCREASED$(R^2=0.993)$. MT solubility in the mixtures of pg and $2-HP{\beta}CD$ also increased linearly but was less than the sum of its solubility in $2-HP{\beta}CD$ and PG individually. The MT solubility was low in water, simulated gastric or intestinal fluid but the highest in the mixture of PG(40v/v%) and $2-HP{\beta}CD$ (30w/v%) although efficiency of MT solubilization in $2-HP{\beta}CD$ decreased as the concentration of PG increased. MT was degraded in a fashion of the first order kinetics $(r^2>0.90)$. MT was unstable in strong acidic solution (HCl-NaCl buffer, pH 1.4) but relatively stable in other pH values of 4-10 at $70^{\circ}C$. In HCl-NaCl buffer, MT in 10% PG was more quickly degraded and then slowed dpwm at a higher concentration. However, the degradation rate constant of MT in 2-HP.betha.CD was not changed significantly when compared to the water. The current studies can be applied to the dosage formulations for the purpose of enhancing percutaneous absorption or bioavailability of MT.

  • PDF

Effect of Guest Molecules on Structure and Properties of Polymer/beta-Cyclodextrin Inclusion Compound Hybrid Films (고분자/베타-사이클로덱스트린 포접 화합물로 이루어진 고분자 혼성체 필름의 물성 및 구조에 미치는 게스트 분자의 영향)

  • Bae, Joonwon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.504-508
    • /
    • 2021
  • In this study, the effect of molecular features of guest molecules on the structure, property, and formation of poly(vinyl alcohol) (PVA)/beta-cyclodextrin (bCD) inclusion compound hybrid films was investigated using three types of guest molecules such as hydroquinone (HQ), arbutin (AB), and tranexamic acid (TA). First, the successful formation of inclusion compounds between bCD and the guest molecules, and polymer/inclusion compound hybrid were proved using Raman spectroscopy. The effect of bCD-based inclusion compounds on the structure and property of PVA matrix composites containing inclusion compounds was also studied using X-ray diffraction (XRD) and thermal analyses such as differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). It was notable that the effect of TA to the crystalline structure of the PVA was significantly different from that of using other guest molecules including HQ and AB. It was also supported by a simple molecular simulation result. This article will be a good example for demonstrating the effect of molecular characteristics on the inclusion compound formation in polymer films, which can provide important information for relevant future research.

Investigation of amorphous material with ice for cold thermal storage

  • Kim, Jhongkwon;Park, Hyunjun;Bae, Junhyuk;Jeong, Sangkwon;Chang, Daejun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.1
    • /
    • pp.40-44
    • /
    • 2019
  • This study investigates mixtures of water and cryoprotectant agents (CPAs) to store high-grade cold energy. Although water is an ideal material for a cold thermal storage (CTS) due to its high specific heat, undesirable volume expansion may cause structural stresses during freezing. The volume expansion can be alleviated by adding the CPAs to water. However, the CPA aqueous solutions not only have different thermal properties but also transit to amorphous state different from pure water. Therefore, these characteristics should be considered when using them as material of the CTS. In experiments, glycerol and dimethyl sulfoxide (DMSO) are selected as the candidate CPA. The volume expansion of the solution is measured by an in-situ strain gauge in low temperature region. The specific heat capacity of the solution is also measured by differential scanning calorimetry (DSC). Both the amount of volume expansion and the specific heat capacity of the CPA aqueous solution decrease in the case of higher concentration of CPA. These characteristics should be contemplated to select optimal aqueous solution for CTS for liquid air energy storage system (LAES). The CPA solutions have advantages of having wide temperature range to utilize the latent heat of water and higher sensible heat of the CPA. The CPA solutions which can satisfy the allowable stress of the structure are determined. Consequently, among the CPA solutions investigated, DMSO 20% w/w solution is the most suitable for the CTS.

Fabrication and Magnetic Properties of Mg and BaFe12O19 Ferromagnetic Composite Powders by Mechanical Alloying (기계적합금화법에 의한 Mg-BaFe12O19 계 강자성 복합분말의 제조 및 자기특성)

  • Lee, Chung-Hyo
    • Korean Journal of Materials Research
    • /
    • v.31 no.2
    • /
    • pp.61-67
    • /
    • 2021
  • Fabrication of a ferromagnetic composite powder for the magnesium and BaFe12O19 system by mechanical alloying (MA) is investigated at room temperature. Mixtures of Mg and BaFe12O19 powders with a weight ratio of Mg:BaFe12O19 = 4:1, 3:2, 2:3 and 1:4 are used. Optimal MA conditions to obtain a ferromagnetic composite with fine microstructure are investigated by X-ray diffraction, differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM) measurement. It is found that Mg-BaFe12O19 composite powders in which BaFe12O19 is dispersed in Mg matrix are successfully produced by MA of BaFe12O19 with Mg for 80 min. for all compositions. Magnetization of Mg-BaFe12O19 composite powders gradually increases with increasing the amounts of BaFe12O19, whereas coercive force of MA powders gradually decreases due to the refinement of BaFe12O19 powders with MA time for all compositions. However, it can be seen that the coercivity of Mg-BaFe12O19 MA composite powders with a weight ratio of Mg:BaFe12O19=4:1 and 3:2 for MA 80 min. are still high, with values of 1260 Oe and 1320 Oe compared to that of Mg:BaFe12O19=1:4. This clearly suggests that the refinement of BaFe12O19 powders during MA process for Mg:BaFe12O19=4:1 and 3:2 tends to be suppressed due to ductile Mg powders.

Synthesis and Electrolyte Characterization of 1-Benzyl-3-butylimidazolium Hydroxide Ionic Liquid (1-Benzyl-3-butylimidazolium Hydroxide 이온성액체 합성 및 전해질 특성 조사)

  • Salman, Muhammad;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.603-606
    • /
    • 2020
  • A hydrophilic alkaline room temperature ionic liquid electrolyte (RT-IL) carrying hydroxide ion as an anion and 1-benzyl-3-butylimidazolium as a cation was synthesized. Electrochemical, physical and structural properties of the synthesized RT-IL were characterized using cyclic voltammetry, ionic conductivity, viscosity, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), FT-IR, and 1H-NMR measurements. High ionic conductivity and low viscosity characteristics comparable to 0.1 M KCl electrolyte solution were achieved for the RT-IL in addition to a wide electrochemical potential window of about 4.4 V. The results indicate that the RT-IL is promising for future applications as an alternative electrolyte to energy and environmental research fields.

Investigation on structural symmetry of CsCoCl3·2H2O crystals by magic-angle spinning 1H and static 133Cs nuclear magnetic resonance

  • Park, Sang Hyeon;Jang, Du Chang;Jeon, Hara;Gyeong, Oh Yi;Lim, Ae Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.26 no.1
    • /
    • pp.10-16
    • /
    • 2022
  • The phase transition temperatures of CsCoCl3·2H2O crystals are investigated via differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Three endothermic peaks at temperatures of 370 K (=TC1), 390 K (=TC2), and 416 K (=TC3) were observed for phase transitions from CsCoCl3·2H2O to CsCoCl3·1.5H2O, to CsCoCl3·H2O, and then to CsCoCl3·0.5H2O, respectively. In addition, the spin-lattice relaxation time T in the rotating frame and T1 in the laboratory frame as well as changes in chemical shifts for 1H and 133Cs near TC1 were found to be temperature dependent. Our analyses results indicated that the changes of chemical shifts, T, and T1 are associated with structural phase transitions near temperature TC1. The changes of chemical shifts, T, and T1 near TC1 were associated with structural phase transitions, owing to the changes in the symmetry of the structure formed of H2O and Cs+ ions. Consequently, the structural symmetry in CsCoCl3·2H2O crystals based on temperature is discussed by the environments of their H and Cs nuclei.