• Title/Summary/Keyword: DRAM1

Search Result 252, Processing Time 0.025 seconds

Process Development of Forming of One Body Fine Pitched S-Type Cantilever Probe in Recessed Trench for MEMS Probe Card (멤스 프로브 카드를 위한 깊은 트렌치 안에서 S 모양의 일체형 미세피치 외팔보 프로브 형성공정 개발)

  • Kim, Bong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • We have developed the process of forming one body S-type cantilever probe in the recessed trench for fine-pitched MEMS probe card. The probe (cantilever beam and pyramid tip) was formed using Deep RIE etching and wet etching. The pyramid tip was formed by the wet etching using KOH and TMAH. The process of forming the curved probe was also developed by the wet etching. Therefore, the fabricated probe is applicable for the probe card for DRAM, Flash memory and RF devices tests and probe tip for IC test socket.

VLSI Design of a Bus Interface Controller for 32-bit RISC microprocessor (32비트 RISC 마이크로프로세서를 위한 버스 인터페이스 제어기의 설계)

  • Heo, Sang-Kyong;An, Sang-Jun;Jeong, Wook-Yeong;Kim, Young-Jun;Lee, Yong-Surk
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.341-344
    • /
    • 1999
  • 본 논문에서는 DSP 기능을 내장한 32비트 RISC 마이크로프로세서를 위한 버스 제어기를 설계하였다. 연구의 초점은 버스 타이밍, 주소 멀티플렉싱, 리프레쉬, 버스 중재 등을 제어하는 버스제어기를 온칩화 하여 CPU로 하여금 외부 램과 추가적인 장치없이 직접 연결될 수 있도록 한 것이다. 버스 제어기가 관리하는 메모리의 종류는 SRAM, ROM, DRAM, EDO DRAM이며 고속 모드(Fast page mode, EDO page mode 및 RAS-down mode)기능을 지원하며 다양한 Wait를 넣을 수 있다. 주소 영역은 4가지(EMAO-EMA3)이며 내부적으로 7개 의 레지스터가 있고 이들을 이용하여 서로 연결된 세 개의 상태 머신으로 모든 램과의 타이밍을 제어함으로써 공유블록을 활용할 수 있었다. Verilog HDL의 기술하고 Synopsys로 합성한 후 타이밍 검증을 수행한 결과 최악조건에서 53.1㎒로 동작할 수 있었다. 그 후 0.6㎛ single poly triple metal process 공정으로 레이아웃 되었고 면적은 44㎜ × 1.21㎜ 이다.

  • PDF

Register-Based Parallel Pipelined Scheme for Synchronous DRAM (동기식 기억소자를 위한 레지스터를 이용한 병렬 파이프라인 방식)

  • Song, Ho Jun
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.108-114
    • /
    • 1995
  • Recently, along wtih the advance of high-performance system, synchronous DRAM's (SDRAM's) which provide consecutive data output synchronized with an external clock signal, have been reported. However, in the conventional SDRAM's which utilize a multi-stage serial pipelined scheme, the column path is divided into multi-stages depending on CAS latency N. Thus, as the operating speed and CAS latency increase, new stages must be added, thereby causing a large area penalty due to additinal latches and I/O lines. In the proposed register-based parallel pipelined scheme, (N-1) registers are located between the read data bus line pair and the data output buffer and the coming data are sequentially stored. Since the column data path is not divided and the read data is directly transmitted to the registers, the busrt read operation can easily be achieved at higher frequencies without a large area penalty and degradation of internal timing margin. Simulation results for 0.32um-Tech. 4-Bank 64M SDRAM show good operation at 200MHz and an area increment is less than 0.1% when CAS latency N is increased from 3 to 4.. This pipelined scheme is more advantageous as the operating frequency increases.

  • PDF

A Study on the Reflow Characteristics of Cu Thin Film (구리 박막의 Reflow 특성에 관한 연구)

  • Kim, Dong-Won;Gwon, In-Ho
    • Korean Journal of Materials Research
    • /
    • v.9 no.2
    • /
    • pp.124-131
    • /
    • 1999
  • Copper film, which is expected to be used as interconnection material for 1 giga DRAM integrated circuits was deposited on hole and trench patterns by Metal Organic Chemical Vapor Deposition(MOCVD) method. After a reflow process, contact and L/S patterns were filled by copper and the characteristics of the Cu reflow process were investigated. When deposited Cu films were reflowed, grain growth and agglomeration of Cu have occurred in surfaces and inner parts of patterns as well as complete filling in patterns. Also Cu thin oxide layers were formed on the surface of Cu films reflowed in $O_2$ambient. Agglomeration and oxidation of Cu had bad influence on the electrical properties of Cu films especially, therefore, their removal and prevention were studied simultaneously. As a pattern size is decreased, preferential reflow takes place inside the patterns and this makes advantages in filling patterns of deep submicron size completely. With Cu reflow process, we could fill the patterns with the size of deep sub-micron and it is expected that Cu reflow process could meet the conditions of excellent interconnection for 1 giga DRAM device when it is combined with Cu MOCVD and CMP process.

  • PDF

Adaptive Mapping Information Management Scheme for High Performance Large Sale Flash Memory Storages (고성능 대용량 플래시 메모리 저장장치의 효과적인 매핑정보 캐싱을 위한 적응적 매핑정보 관리기법)

  • Lee, Yongju;Kim, Hyunwoo;Kim, Huijeong;Huh, Taeyeong;Jung, Sanghyuk;Song, Yong Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.78-87
    • /
    • 2013
  • NAND flash memory has been widely used as a storage medium in mobile devices, PCs, and workstations due to its advantages such as low power consumption, high performance, and random accessability compared to a hard disk drive. However, NAND flash cannot support in-place update so that it is mandatory to erase the entire block before overwriting the corresponding page. In order to overcome this drawback, flash storages need a software support, named Flash Translation Layer. However, as the high performance mass NAND flash memory is getting widely used, the size of mapping tables is increasing more than the limited DRAM size. In this paper, we propose an adaptive mapping information caching algorithm based on page mapping to solve this DRAM space shortage problem. Our algorithm uses a mapping information caching scheme which minimize the flash memory access frequency based on the analysis of several workloads. The experimental results show that the proposed algorithm can increase the performance by up to 70% comparing with the previous mapping information caching algorithm.

New Method for Elimination of Comparator Offset Using the Fowler-Nordheim Stresses (Fowler-Nordheim 스트레스에 의한 MOS 문턱전압 이동현상을 응용한 비교기 옵셋 제거방법)

  • Chung, In-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.3
    • /
    • pp.1-9
    • /
    • 2009
  • In this paper proposed a new method which adaptively eliminates comparator offsets using the threshold voltage shift by the Fowler-Nordheim stress. The method evaluates the sign of comparator offset and gives the FN stress to the stronger MOSFETs of the comparator, leading to offset reduction. We have used an appropriate stressing operation, named 'stress-packet', in order to converge the offset value to zero. We applied the method to the latch-type comparator which is prevalently used for DRAM bitline sense amplifier, and verified through experiments that offsets of the latch-type comparators are nearly eliminated with the stress-packet operations. We also discuss about the reliability issues that must be guaranteed for field application of this method.

Recency and Frequency based Page Management on Hybrid Main Memory

  • Kim, Sungho;Kwak, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.3
    • /
    • pp.1-8
    • /
    • 2018
  • In this paper, we propose a new page replacement policy using recency and frequency on hybrid main memory. The proposal has two features. First, when a page fault occurs in the main memory, the proposal allocates it to DRAM, regardless of operation types such as read or write. The page allocated by the page fault is likely to be high probability of re-reference in the near future. Our allocation can reduce the frequency of write operations in PCM. Second, if the write operations are frequently performed on pages of PCM, the pages are migrated from PCM to DRAM. Otherwise, the pages are maintained in PCM, to reduce the number of unnecessary page migrations from PCM. In our experiments, the proposal reduced the number of page migrations from PCM about 32.12% on average and reduced the number of write operations in PCM about 44.64% on average, compared to CLOCK-DWF. Moreover, the proposal reduced the energy consumption about 15.61%, and 3.04%, compared to other page replacement policies.

A Low Power and Low Noise Data Bus Inversion for High Speed Graphics SDRAM (High Speed Graphics SDRAM을 위한 저 전력, 저 노이즈 Data Bus Inversion)

  • Kwack, Seung-Wook;Kwack, Kae-Dal
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.7
    • /
    • pp.1-6
    • /
    • 2009
  • This paper presents new high speed architecture using DBI(Data Bus Inversion) in DRAM. The DBI is one of the general methods in the signaling circuits to decrease the known problems such as SSO and LSI. Many architectures have been proposed to reduce the number of transitions on the data bus. In this paper, the DBI, the Analog Majority Voter (AMV) circuit, the GIO control circuit and the SSO algorithm are newly proposed. The power consumption can he reduced with the help of direct GIO inversion method and the eye diagram of data can be increased to 40ps. Using proposed DBI scheme can produce almost stable SI of DQs against high speed operation. The DBI is fabricated in 90nm CMOS Technology.

Highly Productive Process Technologies of Cantilever-type Microprobe Arrays for Wafer Level Chip Testing

  • Lim, Jae-Hwan;Ryu, Jee-Youl;Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.2
    • /
    • pp.63-66
    • /
    • 2013
  • This paper describes the highly productive process technologies of microprobe arrays, which were used for a probe card to test a Dynamic Random Access Memory (DRAM) chip with fine pitch pads. Cantilever-type microprobe arrays were fabricated using conventional micro-electro-mechanical system (MEMS) process technologies. Bonding material, gold-tin (Au-Sn) paste, was used to bond the Ni-Co alloy microprobes to the ceramic space transformer. The electrical and mechanical characteristics of a probe card with fabricated microprobes were measured by a conventional probe card tester. A probe card assembled with the fabricated microprobes showed good x-y alignment and planarity errors within ${\pm}5{\mu}m$ and ${\pm}10{\mu}m$, respectively. In addition, the average leakage current and contact resistance were approximately 1.04 nA and 0.054 ohm, respectively. The proposed highly productive microprobes can be applied to a MEMS probe card, to test a DRAM chip with fine pitch pads.