• Title/Summary/Keyword: DQnA

Search Result 64, Processing Time 0.029 seconds

Map-Based Obstacle Avoidance Algorithm for Mobile Robot Using Deep Reinforcement Learning (심층 강화학습을 이용한 모바일 로봇의 맵 기반 장애물 회피 알고리즘)

  • Sunwoo, Yung-Min;Lee, Won-Chang
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.337-343
    • /
    • 2021
  • Deep reinforcement learning is an artificial intelligence algorithm that enables learners to select optimal behavior based on raw and, high-dimensional input data. A lot of research using this is being conducted to create an optimal movement path of a mobile robot in an environment in which obstacles exist. In this paper, we selected the Dueling Double DQN (D3QN) algorithm that uses the prioritized experience replay to create the moving path of mobile robot from the image of the complex surrounding environment. The virtual environment is implemented using Webots, a robot simulator, and through simulation, it is confirmed that the mobile robot grasped the position of the obstacle in real time and avoided it to reach the destination.

Machine Scheduling Models Based on Reinforcement Learning for Minimizing Due Date Violation and Setup Change (납기 위반 및 셋업 최소화를 위한 강화학습 기반의 설비 일정계획 모델)

  • Yoo, Woosik;Seo, Juhyeok;Kim, Dahee;Kim, Kwanho
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.3
    • /
    • pp.19-33
    • /
    • 2019
  • Recently, manufacturers have been struggling to efficiently use production equipment as their production methods become more sophisticated and complex. Typical factors hindering the efficiency of the manufacturing process include setup cost due to job change. Especially, in the process of using expensive production equipment such as semiconductor / LCD process, efficient use of equipment is very important. Balancing the tradeoff between meeting the deadline and minimizing setup cost incurred by changes of work type is crucial planning task. In this study, we developed a scheduling model to achieve the goal of minimizing the duedate and setup costs by using reinforcement learning in parallel machines with duedate and work preparation costs. The proposed model is a Deep Q-Network (DQN) scheduling model and is a reinforcement learning-based model. To validate the effectiveness of our proposed model, we compared it against the heuristic model and DNN(deep neural network) based model. It was confirmed that our proposed DQN method causes less due date violation and setup costs than the benchmark methods.

The Development of a Mathematical model to evaluate Data Quality and an Analysis model to improve the Quality (데이터 품질평가를 위한 수학적 모델 및 개선을 위한 분석 모형 개발)

  • Kim, Yoeng-Won;Kim, Jong-Ki
    • Journal of Internet Computing and Services
    • /
    • v.9 no.5
    • /
    • pp.109-116
    • /
    • 2008
  • The rapid change of computer and Internet environments produces a lot of data of various quality, Because this fact affects enterprise and organization, it demands the level evaluation on data quality, Thus, we propose mathematical model for quality evaluation on the base of data quality in this paper. And we propose the analysis model(web evaluation model, DQnA)) that analyzes and maintains data quality.

  • PDF

Deep Q-Network based Game Agents (심층 큐 신경망을 이용한 게임 에이전트 구현)

  • Han, Dongki;Kim, Myeongseop;Kim, Jaeyoun;Kim, Jung-Su
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.3
    • /
    • pp.157-162
    • /
    • 2019
  • The video game Tetris is one of most popular game and it is well known that its game rule can be modelled as MDP (Markov Decision Process). This paper presents a DQN (Deep Q-Network) based game agent for Tetris game. To this end, the state is defined as the captured image of the Tetris game board and the reward is designed as a function of cleared lines by the game agent. The action is defined as left, right, rotate, drop, and their finite number of combinations. In addition to this, PER (Prioritized Experience Replay) is employed in order to enhance learning performance. To train the network more than 500000 episodes are used. The game agent employs the trained network to make a decision. The performance of the developed algorithm is validated via not only simulation but also real Tetris robot agent which is made of a camera, two Arduinos, 4 servo motors, and artificial fingers by 3D printing.

A Study about Application of Indoor Autonomous Driving for Obstacle Avoidance Using Atari Deep Q Network Model (Atari Deep Q Network Model을 이용한 장애물 회피에 특화된 실내 자율주행 적용에 관한 연구)

  • Baek, Ji-Hoon;Oh, Hyeon-Tack;Lee, Seung-Jin;Kim, Sang-Hoon
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.715-718
    • /
    • 2018
  • 최근 다층의 인공신경망 모델이 수많은 분야에 대한 해결 방안으로 제시되고 있으며 2015년 Mnih이 고안한 DQN(Deep Q Network)는 Atari game에서 인간 수준의 성능을 보여주며 많은 이들에게 놀라움을 자아냈다. 본 논문에서는 Atari DQN Model을 실내 자율주행 모바일 로봇에 적용하여 신경망 모델이 최단 경로를 추종하며 장애물 회피를 위한 행동을 학습시키기 위해 로봇이 가지는 상태 정보들을 84*84 Mat로 가공하였고 15가지의 행동을 정의하였다. 또한 Virtual world에서 신경망 모델이 실제와 유사한 현재 상태를 입력받아 가장 최적의 정책을 학습하고 Real World에 적용하는 방법을 연구하였다.

Apply reinforcement learning of animal wearable robot design and development (강화학습 적용 동물 웨어러블 로봇 설계 및 개발)

  • Sang-soo Lee;Young-Chan Kim;In-A Gwan;Jun-Young Lee
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.824-825
    • /
    • 2023
  • 본 연구는 동물을 위한 웨어러블 로봇을 개발하고, 이를 상황에 따라 적절한 보행을 제어할 수 있도록 강화학습(DQN 알고리즘)을 적용한다. 다양한 센서를 동물에 부착하여 얻은 데이터를 DQN 알고리즘에 입력으로 사용한다. 이 알고리즘은 수집된 데이터를 분석하여 어떤 상황에서 어떤 종류의 보행이 가장 적절한지를 판단하고, 이를 로봇에 적용하여 동물의 보행을 자연스럽게 구현한다

Task Migration in Cooperative Vehicular Edge Computing (협력적인 차량 엣지 컴퓨팅에서의 태스크 마이그레이션)

  • Moon, Sungwon;Lim, Yujin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.12
    • /
    • pp.311-318
    • /
    • 2021
  • With the rapid development of the Internet of Things(IoT) technology recently, multi-access edge computing(MEC) is emerged as a next-generation technology for real-time and high-performance services. High mobility of users between MECs with limited service areas is considered one of the issues in the MEC environment. In this paper, we consider a vehicle edge computing(VEC) environment which has a high mobility, and propose a task migration algorithm to decide whether or not to migrate and where to migrate using DQN, as a reinforcement learning method. The objective of the proposed algorithm is to improve the system throughput while satisfying QoS(Quality of Service) requirements by minimizing the difference between queueing delays in vehicle edge computing servers(VECSs). The results show that compared to other algorithms, the proposed algorithm achieves approximately 14-49% better QoS satisfaction and approximately 14-38% lower service blocking rate.

Trading Strategies Using Reinforcement Learning (강화학습을 이용한 트레이딩 전략)

  • Cho, Hyunmin;Shin, Hyun Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.123-130
    • /
    • 2021
  • With the recent developments in computer technology, there has been an increasing interest in the field of machine learning. This also has led to a significant increase in real business cases of machine learning theory in various sectors. In finance, it has been a major challenge to predict the future value of financial products. Since the 1980s, the finance industry has relied on technical and fundamental analysis for this prediction. For future value prediction models using machine learning, model design is of paramount importance to respond to market variables. Therefore, this paper quantitatively predicts the stock price movements of individual stocks listed on the KOSPI market using machine learning techniques; specifically, the reinforcement learning model. The DQN and A2C algorithms proposed by Google Deep Mind in 2013 are used for the reinforcement learning and they are applied to the stock trading strategies. In addition, through experiments, an input value to increase the cumulative profit is selected and its superiority is verified by comparison with comparative algorithms.

DeNERT: Named Entity Recognition Model using DQN and BERT

  • Yang, Sung-Min;Jeong, Ok-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.29-35
    • /
    • 2020
  • In this paper, we propose a new structured entity recognition DeNERT model. Recently, the field of natural language processing has been actively researched using pre-trained language representation models with a large amount of corpus. In particular, the named entity recognition, which is one of the fields of natural language processing, uses a supervised learning method, which requires a large amount of training dataset and computation. Reinforcement learning is a method that learns through trial and error experience without initial data and is closer to the process of human learning than other machine learning methodologies and is not much applied to the field of natural language processing yet. It is often used in simulation environments such as Atari games and AlphaGo. BERT is a general-purpose language model developed by Google that is pre-trained on large corpus and computational quantities. Recently, it is a language model that shows high performance in the field of natural language processing research and shows high accuracy in many downstream tasks of natural language processing. In this paper, we propose a new named entity recognition DeNERT model using two deep learning models, DQN and BERT. The proposed model is trained by creating a learning environment of reinforcement learning model based on language expression which is the advantage of the general language model. The DeNERT model trained in this way is a faster inference time and higher performance model with a small amount of training dataset. Also, we validate the performance of our model's named entity recognition performance through experiments.

A study on Deep Q-Networks based Auto-scaling in NFV Environment (NFV 환경에서의 Deep Q-Networks 기반 오토 스케일링 기술 연구)

  • Lee, Do-Young;Yoo, Jae-Hyoung;Hong, James Won-Ki
    • KNOM Review
    • /
    • v.23 no.2
    • /
    • pp.1-10
    • /
    • 2020
  • Network Function Virtualization (NFV) is a key technology of 5G networks that has the advantage of enabling building and operating networks flexibly. However, NFV can complicate network management because it creates numerous virtual resources that should be managed. In NFV environments, service function chaining (SFC) composed of virtual network functions (VNFs) is widely used to apply a series of network functions to traffic. Therefore, it is required to dynamically allocate the right amount of computing resources or instances to SFC for meeting service requirements. In this paper, we propose Deep Q-Networks (DQN)-based auto-scaling to operate the appropriate number of VNF instances in SFC. The proposed approach not only resizes the number of VNF instances in SFC composed of multi-tier architecture but also selects a tier to be scaled in response to dynamic traffic forwarding through SFC.