• 제목/요약/키워드: DQnA

검색결과 64건 처리시간 0.02초

작물 생산량 예측을 위한 심층강화학습 성능 분석 (Performance Analysis of Deep Reinforcement Learning for Crop Yield Prediction )

  • 옴마킨;이성근
    • 한국전자통신학회논문지
    • /
    • 제18권1호
    • /
    • pp.99-106
    • /
    • 2023
  • 최근 딥러닝 기술을 활용하여 작물 생산량 예측 연구가 많이 진행되고 있다. 딥러닝 알고리즘은 입력 데이터 세트와 작물 예측 결과에 대한 선형 맵을 구성하는데 어려움이 있다. 또한, 알고리즘 구현은 획득한 속성의 비율에 긍정적으로 의존한다. 심층강화학습을 작물 생산량 예측 응용에 적용한다면 이러한 한계점을 보완할 수 있다. 본 논문은 작물 생산량 예측을 개선하기 위해 DQN, Double DQN 및 Dueling DQN 의 성능을 분석한다. DQN 알고리즘은 과대 평가 문제가 제기되지만, Double DQN은 과대 평가를 줄이고 더 나은 결과를 얻을 수 있다. 본 논문에서 제안된 모델은 거짓 판정을 줄이고 예측 정확도를 높이는 것으로 나타났다.

Deep Q-Network를 이용한 준능동 제어알고리즘 개발 (Development of Semi-Active Control Algorithm Using Deep Q-Network)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제21권1호
    • /
    • pp.79-86
    • /
    • 2021
  • Control performance of a smart tuned mass damper (TMD) mainly depends on control algorithms. A lot of control strategies have been proposed for semi-active control devices. Recently, machine learning begins to be applied to development of vibration control algorithm. In this study, a reinforcement learning among machine learning techniques was employed to develop a semi-active control algorithm for a smart TMD. The smart TMD was composed of magnetorheological damper in this study. For this purpose, an 11-story building structure with a smart TMD was selected to construct a reinforcement learning environment. A time history analysis of the example structure subject to earthquake excitation was conducted in the reinforcement learning procedure. Deep Q-network (DQN) among various reinforcement learning algorithms was used to make a learning agent. The command voltage sent to the MR damper is determined by the action produced by the DQN. Parametric studies on hyper-parameters of DQN were performed by numerical simulations. After appropriate training iteration of the DQN model with proper hyper-parameters, the DQN model for control of seismic responses of the example structure with smart TMD was developed. The developed DQN model can effectively control smart TMD to reduce seismic responses of the example structure.

시뮬레이션 환경에서의 DQN을 이용한 강화 학습 기반의 무인항공기 경로 계획 (Path Planning of Unmanned Aerial Vehicle based Reinforcement Learning using Deep Q Network under Simulated Environment)

  • 이근형;김신덕
    • 반도체디스플레이기술학회지
    • /
    • 제16권3호
    • /
    • pp.127-130
    • /
    • 2017
  • In this research, we present a path planning method for an autonomous flight of unmanned aerial vehicles (UAVs) through reinforcement learning under simulated environment. We design the simulator for reinforcement learning of uav. Also we implement interface for compatibility of Deep Q-Network(DQN) and simulator. In this paper, we perform reinforcement learning through the simulator and DQN, and use Q-learning algorithm, which is a kind of reinforcement learning algorithms. Through experimentation, we verify performance of DQN-simulator. Finally, we evaluated the learning results and suggest path planning strategy using reinforcement learning.

  • PDF

단말간 직접 통신 네트워크를 위한 심층 강화학습 기반 분산적 스케쥴링 알고리즘 (A Distributed Scheduling Algorithm based on Deep Reinforcement Learning for Device-to-Device communication networks)

  • 정무웅;김륜우;반태원
    • 한국정보통신학회논문지
    • /
    • 제24권11호
    • /
    • pp.1500-1506
    • /
    • 2020
  • 본 논문에서는 오버레이 단말 간 직접 (Device-to-Device : D2D) 통신 네트워크를 위한 강화학습 기반 스케쥴링 문제를 연구한다. 강화학습 모델 중 하나인 Q-learning을 이용한 D2D 통신 기술들이 연구되었지만, Q-learning은 상태와 행동의 개수가 증가함에 따라서 높은 복잡도를 유발한다. 이러한 문제를 해결하기 위하여 Deep Q Network (DQN) 기반 D2D 통신 기술들이 연구되었다. 본 논문에서는 무선 통신 시스템 특성을 고려한 DQN 모델을 디자인하고, 피드백 및 시그널링 오버헤드를 줄일 수 있는 DQN 기반 분산적 스케쥴링 방식을 제안한다. 제안 방식은 중앙집중식으로 변수들을 학습시키고, 최종 학습된 파라미터를 모든 단말들에게 전달한다. 모든 단말들은 최종 학습된 파라미터를 이용하여 각자의 행동을 개별적으로 결정한다. 제안 방식의 성능을 컴퓨터 시뮬레이션을 통하여 분석하고, 최적방식, 기회주의적 선택 방식, 전체 전송 방식과 비교한다.

DQN 기반 비디오 스트리밍 서비스에서 세그먼트 크기가 품질 선택에 미치는 영향 (The Effect of Segment Size on Quality Selection in DQN-based Video Streaming Services)

  • 김이슬;임경식
    • 한국멀티미디어학회논문지
    • /
    • 제21권10호
    • /
    • pp.1182-1194
    • /
    • 2018
  • The Dynamic Adaptive Streaming over HTTP(DASH) is envisioned to evolve to meet an increasing demand on providing seamless video streaming services in the near future. The DASH performance heavily depends on the client's adaptive quality selection algorithm that is not included in the standard. The existing conventional algorithms are basically based on a procedural algorithm that is not easy to capture and reflect all variations of dynamic network and traffic conditions in a variety of network environments. To solve this problem, this paper proposes a novel quality selection mechanism based on the Deep Q-Network(DQN) model, the DQN-based DASH Adaptive Bitrate(ABR) mechanism. The proposed mechanism adopts a new reward calculation method based on five major performance metrics to reflect the current conditions of networks and devices in real time. In addition, the size of the consecutive video segment to be downloaded is also considered as a major learning metric to reflect a variety of video encodings. Experimental results show that the proposed mechanism quickly selects a suitable video quality even in high error rate environments, significantly reducing frequency of quality changes compared to the existing algorithm and simultaneously improving average video quality during video playback.

강화학습 기반 고속도로 갓길차로제 운영 알고리즘 개발 연구 (Study on the Development of an Expressway Hard Shoulder Running Algorithm Using Reinforcement Learning)

  • 정하림;박상민;강성관;윤일수
    • 한국ITS학회 논문지
    • /
    • 제22권4호
    • /
    • pp.63-77
    • /
    • 2023
  • 본 연구는 고속도로 상의 반복적인 교통 혼잡 문제를 해결하기 위한 현실적인 대안 중 하나인 고속도로 갓길차로제를 효과적으로 운영하기 위해 강화학습 기법을 적용하고자 하였다. 강화학습의 DQN을 활용한 갓길차로제 운영 알고리즘을 개발하였고 미시교통시뮬레이션 프로그램 VISSIM을 활용하여 경부선 기흥IC-수원IC 구간의 데이터를 활용하여 강화학습 에이전트를 학습시켰고 그 효과를 평가하였다. 효과평가는 크게 이동성과 안전성의 두 가지 측면에서 진행하였다. 분석 결과 DQN 기반 갓길차로제 운영을 통해 시간당 최대 26km/h의 속도 개선 효과가 발생하였으며, DQN 에이전트는 기존 운영 기준인 60km/h 보다 약 10km/h 높은 속도로 갓길 차로제를 운영하였다. 안전성 효과의 경우 기존 운영 방식과 DQN 기반 운영을 통해 발생되는 차량 간 상충건수를 비교하였고 산출된 상충건수의 차이가 크지 않아 10km/h의 운영 기준 속도의 차이가 큰 영향을 주지 않은 것으로 판단하였다. 이러한 결과를 종합적으로 고려할 때 강화학습 기반 고속도로 갓길차로제 운영은 이동성 측면에서는 분명한 효과가 존재하였고 현재 운영 기준 속도의 조정을 고려해볼 필요가 있을 것으로 판단된다.

Visual Analysis of Deep Q-network

  • Seng, Dewen;Zhang, Jiaming;Shi, Xiaoying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권3호
    • /
    • pp.853-873
    • /
    • 2021
  • In recent years, deep reinforcement learning (DRL) models are enjoying great interest as their success in a variety of challenging tasks. Deep Q-Network (DQN) is a widely used deep reinforcement learning model, which trains an intelligent agent that executes optimal actions while interacting with an environment. This model is well known for its ability to surpass skilled human players across many Atari 2600 games. Although DQN has achieved excellent performance in practice, there lacks a clear understanding of why the model works. In this paper, we present a visual analytics system for understanding deep Q-network in a non-blind matter. Based on the stored data generated from the training and testing process, four coordinated views are designed to expose the internal execution mechanism of DQN from different perspectives. We report the system performance and demonstrate its effectiveness through two case studies. By using our system, users can learn the relationship between states and Q-values, the function of convolutional layers, the strategies learned by DQN and the rationality of decisions made by the agent.

동적 저궤도 위성 네트워크를 위한 Dueling DQN 기반 라우팅 기법 (Dueling DQN-based Routing for Dynamic LEO Satellite Networks)

  • 김도형;이상현;이헌철;원동식
    • 대한임베디드공학회논문지
    • /
    • 제18권4호
    • /
    • pp.173-183
    • /
    • 2023
  • This paper deals with a routing algorithm which can find the best communication route to a desired point considering disconnected links in the LEO (low earth orbit) satellite networks. If the LEO satellite networks are dynamic, the number and distribution of the disconnected links are varying, which makes the routing problem challenging. To solve the problem, in this paper, we propose a routing method based on Dueling DQN which is one of the reinforcement learning algorithms. The proposed method was successfully conducted and verified by showing improved performance by reducing convergence times and converging more stably compared to other existing reinforcement learning-based routing algorithms.

이동 장애물을 고려한 DQN 기반의 Mapless Navigation 및 학습 시간 단축 알고리즘 (Mapless Navigation Based on DQN Considering Moving Obstacles, and Training Time Reduction Algorithm)

  • 윤범진;유승열
    • 한국정보통신학회논문지
    • /
    • 제25권3호
    • /
    • pp.377-383
    • /
    • 2021
  • 최근 4차 산업혁명에 따라 공장, 물류창고, 서비스영역에서 유연한 물류이송을 위한 자율 이동형 모바일 로봇의 사용이 증가하고 있다. 대규모 공장에서는 Simultaneous Localization and Mapping(SLAM)을 수행하기 위하여 많은 수작업이 필요하기 때문에 개선된 모바일 로봇 자율 주행에 대한 필요성이 대두되고 있다. 이에 따라 본 논문에서는 고정 및 이동 장애물을 피해 최적의 경로로 주행하는 Mapless Navigation에 대한 알고리즘을 제안하고자 한다. Mapless Navigation을 위하여 Deep Q Network(DQN)을 통해 고정 및 이동 장애물을 회피하도록 학습하였고 두 종류의 장애물 회피에 대하여 각각 정확도 90%, 93%를 얻었다. 또한 DQN은 많은 학습 시간을 필요로 하는데 이를 단축하기 위한 목표의 크기 변화 알고리즘을 제안하고 이를 시뮬레이션을 통하여 단축된 학습시간과 장애물 회피 성능을 확인하였다.

XH-DQN: 사실 검증을 위한 그래프 Transformer와 DQN 결합 모델 (XH-DQN: Fact verification using a combined model of graph transformer and DQN)

  • 서민택;나승훈;신동욱;김선훈;강인호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.227-232
    • /
    • 2021
  • 사실 검증(Fact verification) 문제는 문서 검색(Document retrieval), 증거 선택(Evidence selection), 증거 검증(Claim verification) 3가지 단계로 구성되어있다. 사실 검증 모델들의 주요 관심사인 증거 검증 단계에서 많은 모델이 제안되는 가운데 증거 선택 단계에 집중하여 강화 학습을 통해 해결한 모델이 제안되었다. 그래프 기반의 모델과 강화 학습 기반의 사실 검증 모델을 소개하고 각 모델을 한국어 사실 검증에 적용해본다. 또한, 두 모델을 같이 사용하여 각 모델의 장점을 가지는 부분을 병렬적으로 결합한 모델의 성능과 증거의 구성 단위에 따른 성능도 비교한다.

  • PDF