Acknowledgement
이 연구는 2022년 정부 (방위사업청)의 재원으로 국방과학연구소의 지원을 받아 수행된 연구임 (UI220033VD).
References
- B. S. Roh, M. H. Han, D. W. Kum, K. S. Jeon, "A Study on the Reinforcement Learning Routing for LEO Satellite Network", Proceedings of the Korean Institute of Communication Sciences Conference, pp.537-538, 2022.
- J. H. Lee, Y. C. Ko, "A Study on the Low-earth Orbit Satellite Based Non-terrestrial Network Systems Via Deep-reinforcement Learning", Proceedings of the Korean Institute of Communication Sciences Conference, pp.1306-1307, 2021.
- X. Wang, Z. Dai, Z. Xu. "LEO Satellite Network Routing Algorithm Based on Reinforcement Learning." In 2021 IEEE 4th International Conference on Electronics Technology (ICET), pp. 1105-1109. IEEE, 2021.
- P. Zuo, C. Wang, Z. Yao, S. Hou, H. Jiang. "An Intelligent Routing Algorithm for Leo Satellites Based on Deep Reinforcement Learning." In 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), pp. 1-5. IEEE, 2021.
- A. Pattanaik, Z. Tang, S. Liu, G. Bommannan, G. Chowdhary. "Robust Deep Reinforcement Learning with Adversarial Attacks." arXiv preprint arXiv:1712.03632 (2017).
- A. Cigliano, F. Zampognaro. "A Machine Learning Approach for Routing in Satellite Mega-Constellations." In 2020 International Symposium on Advanced Electrical and Communication Technologies (ISAECT), pp. 1-6. IEEE, 2020.
- V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller. "Playing Atari with Deep Reinforcement Learning." arXiv preprint arXiv:1312.5602 (2013).
- R. S. Sutton, A. G. Barto, "Reinforcement Learning: An Introduction." MIT press, 2018.
- Y. Burda, H. Edwards, A. Storkey, O. Klimov "Exploration by Random Network Distillation." arXiv preprint arXiv:1810.12894 (2018).
- W. Zhao, J. P. Queralta, T. Westerlund. "Sim-to-real Transfer in Deep Reinforcement Learning for Robotics: a Survey." In 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 737-744. IEEE, 2020.
- Z. Wang, T. Schaul, M. Hessel, H. V. Hasselt, M. Lanctot, Na. de Freitas, "Dueling Network Architectures for Deep Reinforcement Learning." In International Conference on Machine Learning, pp. 1995-2003. PMLR, 2016.
- V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis, "Human-level Control Through Deep Reinforcement Learning." Nature 518, No. 7540, pp. 529-533, 2015. https://doi.org/10.1038/nature14236
- J. H. Baek, H. T. Oh, S. J. Lee, S. H. Kim. "A Study about Application of Indoor Autonomous Driving for Obstacle Avoidance Using Atari Deep Q Network Model." In Proceedings of the Korea Information Processing Society Conference, pp. 715-718. Korea Information Processing Society, 2018.
- T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra. "Continuous Control with Deep Reinforcement Learning." arXiv preprint arXiv:1509.02971 (2015).
- T. Schaul, J. Quan, I. Antonoglou, D. Silver. "Prioritized Experience Replay." arXiv preprint arXiv:1511.05952 (2015).
- V. Konda, J. Tsitsiklis. "Actor-critic Algorithms." Advances in Neural Information Processing Systems 12 (1999).
- J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov. "Proximal Policy Optimization Algorithms." arXiv preprint arXiv:1707.06347 (2017).