• Title/Summary/Keyword: DOP 시뮬레이션

Search Result 13, Processing Time 0.016 seconds

A Study of DOA estimation based on TDOA/AOA for jammer localization (전파위협원 위치결정을 위한 TDOA/AOA 기반의 DOA 추정 기법 연구)

  • Choi, Heon-Ho;Jin, Mi-Hyun;Lim, Deok-Won;Nam, Gi-Wook;Park, Chan-Sik;Lee, Sang-Jeong
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.962-969
    • /
    • 2011
  • This paper proposes the DOA estimation method based on TDOA/AOA for jammer localization method in GBAS environment. The proposed method can effectively estimate DOA of jamming signal as the range for DOA estimation is reduced remarkably by using DOP and 1st approximate solution using TDOA measurements only. Through the proposed method, more precise DOA can be obtained and the performance of jammer localization is increased simultaneously. Also, the effectiveness of proposed method will be confirmed through the simulated results.

Simulating the Availability of Integrated GNSS Positioning in Dense Urban Areas (통합 GNSS 환경에서 도시공간 위성측위의 가용성 평가 시뮬레이션)

  • Suh, Yong-Cheol;Lee, Yang-Won
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.3
    • /
    • pp.231-238
    • /
    • 2007
  • This paper describes the availability of the forthcoming integrated GNSS(Global Navigation Positioning System) positioning that includes GPS(Global Positioning System), Galileo, and QZSS(Quasi-Zenith Satellites System). We built a signal propagation model that identifies direct, multipath, and diffraction signals, using the principles of specular reflection and ray tracing technique. The signal propagation model was combined with 3D GIS(three-dimensional geographic information system) in order to measure the satellite visibility and positioning error factors, such as the number of visible satellites, average elevation of visible satellites, optimized DOP(dilution of position) values, and the portion of multipath-producing satellites. Since Galileo and QZSS will not be fully operational until 2010, we used a simulation in comparing GPS and GNSS positioning for a $1km{\times}1km$ developed area in Shinjuku, Tokyo. To account for local terrain variation. we divided the target area into 40,000 $5m{\times}5m$ grid cells. The number of visible satellites and that of multipath-free satellites will be greatly increased in the integrated GNSS environment while the average elevation of visible satellites will be higher in the GPS positioning. Much decreased PDOP(position dilution of precision) values indicate the appropriate satellite/user geometry of the integrated GNSS; however, in dense urban areas, multipath mitigation will be more important than the satellite/user geometry. Thus, the efforts for applying current technologies of multipath mitigation to the future GNSS environment will be necessary.

Development and Validation of an Integrated GNSS Simulator Using 3D Spatial Information (3차원 공간정보를 이용한 통합 GNSS 시뮬레이터 개발 및 검증)

  • Kim, Hye-In;Park, Kwan-Dong;Lee, Ho-Seok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.6
    • /
    • pp.659-667
    • /
    • 2009
  • In this study, an integrated GNSS Simulator called Inha GNSS Simulation System (IGSS) using 3D spatial information was developed and validated. Also positioning availability and accuracy improvement were evaluated under the integrated GNSS environment using IGSS. GPS and GLONASS satellite visibility predictions were compared with real observations, and their frequency of error were 6.4% and 7.5%, respectively. To evaluate positioning availability and accuracy improvement under the integrated GNSS environment, the Daejeon government complex area was selected to be the test site because the area has high-rise buildings and thus is susceptible to signal blockages. The test consists of three parts: the first is when only GPS was used; the second is when both GPS and GLONASS were simulated; and the last is when GPS, GLONASS, and Galileo were used all together. In each case, the number of visible satellites and Dilution Of Precision were calculated and compared.