• 제목/요약/키워드: DNA-protein interaction

검색결과 194건 처리시간 0.028초

Binding Pattern Elucidation of NNK and NNAL Cigarette Smoke Carcinogens with NER Pathway Enzymes: an Onco-Informatics Study

  • Jamal, Qazi Mohammad Sajid;Dhasmana, Anupam;Lohani, Mohtashim;Firdaus, Sumbul;Ansari, Md Yousuf;Sahoo, Ganesh Chandra;Haque, Shafiul
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권13호
    • /
    • pp.5311-5317
    • /
    • 2015
  • Cigarette smoke derivatives like NNK (4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone) and NNAL (4-(methylnitrosamino)-1-(3-pyridyl)-1-butan-1-ol) are well-known carcinogens. We analyzed the interaction of enzymes involved in the NER (nucleotide excision repair) pathway with ligands (NNK and NNAL). Binding was characterized for the enzymes sharing equivalent or better interaction as compared to +Ve control. The highest obtained docking energy between NNK and enzymes RAD23A, CCNH, CDK7, and CETN2 were -7.13 kcal/mol, -7.27 kcal/mol, -8.05 kcal/mol and -7.58 kcal/mol respectively. Similarly the highest obtained docking energy between NNAL and enzymes RAD23A, CCNH, CDK7, and CETN2 were -7.46 kcal/mol, -7.94 kcal/mol, -7.83 kcal/mol and -7.67 kcal/mol respectively. In order to find out the effect of NNK and NNAL on enzymes involved in the NER pathway applying protein-protein interaction and protein-complex (i.e. enzymes docked with NNK/NNAL) interaction analysis. It was found that carcinogens are well capable to reduce the normal functioning of genes like RAD23A (HR23A), CCNH, CDK7 and CETN2. In silico analysis indicated loss of functions of these genes and their corresponding enzymes, which possibly might be a cause for alteration of DNA repair pathways leading to damage buildup and finally contributing to cancer formation.

The linker connecting the tandem ubiquitin binding domains of RAP80 is critical for lysine 63-linked polyubiquitin-dependent binding activity

  • Cho, Hyun-Jung;Lee, Sang-Ho;Kim, Hong-Tae
    • BMB Reports
    • /
    • 제42권11호
    • /
    • pp.764-768
    • /
    • 2009
  • The tandem ubiquitin-interacting motif (UIM) domain located at the N-terminus of Receptor Associated Protein 80 (RAP80) plays a crucial role in ionizing radiation (IR)-induced DNA damage response. RAP80 translocates to sites of IR-induced DNA damage through interaction of its UIM domain with ubiquitinated H2A and Lys63-linked polyubiquitin chains. The exact mechanism, however, through which RAP80 associates with Lys63-linked polyubiquitin chains is not clear. Here, we show by in vitro GST-pull down assays that modifying the linker region between the tandem ubiquitin binding domains of RAP80 changes the binding affinity for Lys63-linked polyubiquitin chains and affects translocation to sites of DNA breaks. Based on these findings, we suggest that the length of the linker region between the tandem ubiquitin binding domains of RAP80 may be a key factor in the binding of RAP80 with Lys63-linked polyubiquitin chains as well as in the translocation of RAP80 to DNA break sites.

저선량 방사선에 의한 Ikaros-Autotaxin 상호작용 조절 효과 (The Regulatory Effects of Low-Dose Ionizing Radiation on Ikaros-Autotaxin Interaction)

  • 강한아;조성준;김성진;남선영;양광희
    • 방사선산업학회지
    • /
    • 제10권1호
    • /
    • pp.7-12
    • /
    • 2016
  • Ikaros, a transcription factor containing zinc-finger motif, has known as a critical regulator of hematopoiesis in immune system. Ikaros protein modulates the transcription of target genes via binding to the regulatory elements of the genes promoters. However the regulatory function of Ikaros in other organelle except nuclear remains to be determined. This study explored radiation-induced modulatory function of Ikaros in cytoplasm. The results showed that Ikaros protein lost its DNA binding ability after LDIR (low-dose ionizing radiation) exposure. Cell fractionation and Western blot analysis showed that Ikaros protein was translocated into cytoplasm from nuclear by LDIR. This was confirmed by immunofluorescence assay. We identified Autotaxin as a novel protein which potentially interacts with Ikaros through in vitro protein-binding screening. Co-immunoprecipitation assay revealed that Ikaros and Autotaxin are able to bind each other. Autotaxin is a crucial enzyme generating lysophosphatidic acid (LPA), a phospholipid mediator, which has potential regulatory effects on immune cell growth and motility. Our results indicate that LDIR potentially regulates immune system via protein-protein interaction of Ikaros and Autotaxin.

R3V6 Amphiphilic Peptide with High Mobility Group Box 1A Domain as an Efficient Carrier for Gene Delivery

  • Ryu, Jaehwan;Jeon, Pureum;Lee, Minhyung
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3665-3670
    • /
    • 2013
  • The R3V6 peptide includes a hydrophilic arginine stretch and a hydrophobic valine stretch. In previous studies, the R3V6 peptide was evaluated as a gene carrier and was found to have low cytotoxicity. However, the transfection efficiency of R3V6 was lower than that of poly-L-lysine (PLL) in N2A neuroblastoma cells. In this study, the transfection efficiency of R3V6 was improved in combination with high mobility group box 1A domain (HMGA). HMGA is originated from the nuclear protein and has many positively-charged amino acids. Therefore, HMGA binds to DNA via charge interaction. In addition, HMGA has a nuclear localization signal peptide and may increase the delivery efficiency of DNA into the nucleus. The ternary complex with HMGA, R3V6, and DNA was prepared and evaluated as a gene carrier. First, the HMGA/DNA complex was prepared with a negative surface charge. Then, R3V6 was added to the complex to coat the negative charges of the HMGA/DNA complex, forming the ternary complex of HMGA, R3V6, and DNA. A physical characterization study showed that the ternary complex was more stable than the PLL/DNA complex. The HMGA/R3V6/DNA complex had a higher transfection efficiency than the PLL/DNA, HMGA/DNA, or R3V6/DNA complexes in N2A cells. Furthermore, the HMGA/R3V6/DNA complex was not toxic to cells. Therefore, the HMGA/R3V6/DNA complex may be a useful gene delivery carrier.

HeLa 세포에서 IgE-dependent Histamine-Releasing Factor와 Triosephosphate Isomerase의 상호작용 규명 (Interaction between IgE-Dependent Histamine-Releasing Factor and Triosephosphate Isomerase in HeLa Cells)

  • 문지애;김화정;이경림
    • 한국미생물·생명공학회지
    • /
    • 제33권4호
    • /
    • pp.255-259
    • /
    • 2005
  • 본 실험에서는 HRF의 조절단백질을 알아보기 위해 HRF를 bait로 한 yeast two hybrid assay를 실행한 결과 해당과정에 관여하는 TPI(triosephosphate isomerase)라는 효소를 발견하였으며, 가장 많이 중복되어 있었다. In vitro에서 HRF는 TPI의 C말단 잔기 부근(아미노산 156-249)이 상호작용에 주로 관여하는 부위임을 알 수 있었다. 또한, HeLa 세포에서 immunoprecipitation을 이용하여 HRF와 TPI의 상호작용이 실제 in vivo에서도 일어나는 현상이라는 것을 밝혔다. 결과적으로 HRF와 TPI 상호작용은 세포내 일정량이 존재하며 여러가지 신호전달에 의해 동시에 Na,K-ATPase와도 상호작용하는 것으로 생각된다.

In silico docking of methyl isocyanate (MIC) and its hydrolytic product (1, 3-dimethylurea) shows significant interaction with DNA Methyltransferase 1 suggests cancer risk in Bhopal-Gas-Tragedy survivors

  • Khan, Inbesat;Senthilkumar, Chinnu Sugavanam;Upadhyay, Nisha;Singh, Hemant;Sachdeva, Meenu;Jatawa, Suresh Kumar;Tiwari, Archana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권17호
    • /
    • pp.7663-7670
    • /
    • 2015
  • DNA methyltransferase 1 (DNMT1) is a relatively large protein family responsible for maintenance of normal methylation, cell growth and survival in mammals. Toxic industrial chemical exposure associated methylation misregulation has been shown to have epigenetic influence. Such misregulation could effectively contribute to cancer development and progression. Methyl isocyanate (MIC) is a noxious industrial chemical used extensively in the production of carbamate pesticides. We here applied an in silico molecular docking approach to study the interaction of MIC with diverse domains of DNMT1, to predict cancer risk in the Bhopal population exposed to MIC during 1984. For the first time, we investigated the interaction of MIC and its hydrolytic product (1,3-dimethylurea) with DNMT1 interacting (such as DMAP1, RFTS, and CXXC) and catalytic (SAM, SAH, and Sinefungin) domains using computer simulations. The results of the present study showed a potential interaction of MIC and 1,3-dimethylurea with these domains. Obviously, strong binding of MIC with DNMT1 interrupting normal methylation will lead to epigenetic alterations in the exposed humans. We suggest therefore that the MIC-exposed individuals surviving after 1984 disaster have excess risk of cancer, which can be attributed to alterations in their epigenome. Our findings will help in better understanding the underlying epigenetic mechanisms in humans exposed to MIC.

Protein tRNA Mimicry in Translation Termination

  • Nakamura, Yoshikazu
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2001년도 Proceedings of 2001 International Symposium
    • /
    • pp.83-89
    • /
    • 2001
  • Recent advances in the structural and molecular biology uncovered that a set of translation factors resembles a tRNA shape and, in one case, even mimics a tRNA function for deciphering the genetic :ode. Nature must have evolved this 'art' of molecular mimicry between protein and ribonucleic acid using different protein architectures to fulfill the requirement of a ribosome 'machine'. Termination of protein synthesis takes place on the ribosomes as a response to a stop, rather than a sense, codon in the 'decoding' site (A site). Translation termination requires two classes of polypeptide release factors (RFs): a class-I factor, codon-specific RFs (RFI and RF2 in prokaryotes; eRFI in eukaryotes), and a class-IT factor, non-specific RFs (RF3 in prokaryotes; eRF3 in eukaryotes) that bind guanine nucleotides and stimulate class-I RF activity. The underlying mechanism for translation termination represents a long-standing coding problem of considerable interest since it entails protein-RNA recognition instead of the well-understood codon-anticodon pairing during the mRNA-tRNA interaction. Molecular mimicry between protein and nucleic acid is a novel concept in biology, proposed in 1995 from three crystallographic discoveries, one, on protein-RNA mimicry, and the other two, on protein-DNA mimicry. Nyborg, Clark and colleagues have first described this concept when they solved the crystal structure of elongation factor EF- Tu:GTP:aminoacyl-tRNA ternary complex and found its overall structural similarity with another elongation factor EF-G including the resemblance of part of EF-G to the anticodon stem of tRNA (Nissen et al. 1995). Protein mimicry of DNA has been shown in the crystal structure of the uracil-DNA glycosylase-uracil glycosylase inhibitor protein complex (Mol et al. 1995; Savva and Pear 1995) as well as in the NMR structure of transcription factor TBP-TA $F_{II}$ 230 complex (Liu et al. 1998). Consistent with this discovery, functional mimicry of a major autoantigenic epitope of the human insulin receptor by RNA has been suggested (Doudna et al. 1995) but its nature of mimic is. still largely unknown. The milestone of functional mimicry between protein and nucleic acid has been achieved by the discovery of 'peptide anticodon' that deciphers stop codons in mRNA (Ito et al. 2000). It is surprising that it took 4 decades since the discovery of the genetic code to figure out the basic mechanisms behind the deciphering of its 64 codons.

  • PDF

Receptor-Mediated Endocytosis of Hepatitis B Virus PreS1d Protein in EBV-Transformed B-Cell line

  • Park, Jung-Hyun;Cho, Eun-Wie;Lee, Dong-Gun;Park, Jung-Min;Lee, Yun-Jung;Choi, Eun-A;Kim, Kill-Lyong
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권6호
    • /
    • pp.844-850
    • /
    • 2000
  • The specific binding and internalization of viral particles is an essential step for the successful infection of viral pathogens. In the case of the hepatitis B virus (HBV), virions bind to the host cell via the preS domain of the viral surface antigen and are subsequently internalized by endocytosis. HBV-preS specific receptors are primarily expressed on hepatocytes, however, viral DNA and proteins have also been detected in extrahepatic sites, suggsting that celluar recepators for HBV may also exist on extrahepatic cells. Recently, an EBV-transformed B-cell line was identified onto which the preS region binds in a receptor-ligand specific manner. In this study, this specific interaction was further characterized, and the binding region within the preS protein was locaized. Also the internalization after host cell attachment was visualized and analyzed by fluorescence-labeled HBV-preS1 proteins using confocal microscopy. Energy depletion by sodium azide treatment effectively inhibited the internalization of the membrane-bound preS1 ligands, thereby indicating an energy-dependent receptor-mediated endocytotic pathway. Accordingly, the interaction of HBV-pres! with this specific B-cell line may serve as an effective model for an infection pathway in extrahepatic cells.

  • PDF

Nebulin C-terminus Interacts with NCBP51, a New Isoform of RING Finger Protein 125 (RNF125)

  • Kim, Ji-Hee;Kim, Hyun-Suk;Park, Eun-Ran;Choi, Jae-Kyoung;Lee, Yeong-Mi;Choi, Jun-Hyuk;Shin, Jung-Woog;Kim, Chong-Rak
    • 대한의생명과학회지
    • /
    • 제13권1호
    • /
    • pp.1-10
    • /
    • 2007
  • Nebulin, a giant modular protein from muscle, is thought to act as molecular ruler in sarcomere assembly. In skeletal muscle, the C-terminal ${\sim}50 kDa$ region of nebulin extends into the Z-line lattice. The most recent studies implicated highlighting its extensive isoform diversity and exciting reports revealed its expression in cardiac and non-muscle tissues containing brain. Also these novel findings are indicating that nebulin is actually a multifunctional filament system, perhaps playing roles in signal transduction, contractile regulation, and myofibril force generation, as well as other not yet defined functions. However the binding protein of nebulin and function in brain is still unknown. A novel binding partner of nebulin C-terminal region was identified by screening a human brain cDNA library using yeast two-hybrid system. Nebulin C-terminus binding protein 51 (NCBP51) was contained a RING-finger domain and identified a new isoform of RING finger protein 125 (RNF125). The interaction was confirmed using the GST pull-down assay. NCBP51 belongs to a family of the RING finger proteins and its function remains to be identified in brain. The role of nebulin and NCBP51 will be studied by loss-of-function using siRNA technique in brain.

  • PDF

Ligand and Dimerization Dependent Transactivation Capability of Aromatic Hydrocarbon Receptor

  • Park, Hyun-Sung
    • BMB Reports
    • /
    • 제32권3호
    • /
    • pp.279-287
    • /
    • 1999
  • The aromatic hydrocarbon receptor (AhR) is a cytosolic protein that binds the environmental pollutant, dioxin. The liganded AhR translocates into the nucleus where it heterimerizes with a constitutive nuclear protein, AhR nuclear translocator (Arnt). The N-terminal regions of both AhR and Arnt contain basic helix-loop-helix (bHLH) and Per-AhR-Arnt-Sim (PAS) motifs that are required for DNA binding, dimerization, and ligand binding whereas the C-terminal regions of both AhR and Arnt contain transactivation domains. Here, results from the mammalian two-hybrid system indicate that Arnt can make a homodimer but AhR cannot. In the presence of dioxin, the interaction between AhR and Arnt is stronger than that of the Arnt homodimer, suggesting that Arnt prefers to make a heterodimer with the liganded AhR rather than a homodimer. Transfection analyses using the GAL4-driven reporter system suggest that AhR's N-terminal region represses its own transactivation domain, as well as exogenous transactivation domains such as Sp 1 and VP16. Interestingly, the repressed transactivation domains of AhR are activated by ligand-dependent heterodimerization with Arnt. These observations suggest that heterodimerzation with Arnt is necessary not only for DNA binding but also for activation of the repressed transactivation capability of AhR.

  • PDF