References
- Rouse, J. and Jackson, S. P. (2002) Interfaces between the detection, signaling, and repair of DNA damage. Science 297, 547-551 https://doi.org/10.1126/science.1074740
- Su, T. T. (2006) Cellular responses to DNA damage: one signal, multiple choices. Annu. Rev. Genet. 40, 187-208 https://doi.org/10.1146/annurev.genet.40.110405.090428
- Kim, H. and Chen, J. (2008) New players in the BRCA1-mediated DNA damage responsive pathway. Mol. Cells 25, 457-461
- Kim, H., Huang, J. and Chen, J. (2007) CCDC98 is a BRCA1-BRCT domain-binding protein involved in the DNA damage response. Nat. Struct. Mol. Biol. 14,710-715 https://doi.org/10.1038/nsmb1277
- Liu, Z., Wu, J. and Yu, X. (2007) CCDC98 targets BRCA1 to DNA damage sites. Nat. Struct. Mol. Biol. 14, 716-720 https://doi.org/10.1038/nsmb1279
- Yan, J., Kim, Y. S., Yang, X. P., Li, L. P., Liao, G., Xia, F. and Jetten, A. M. (2007) The ubiquitin-interacting motif containing protein RAP80 interacts with BRCA1 and functions in DNA damage repair response. Cancer Res. 67, 6647-6656 https://doi.org/10.1158/0008-5472.CAN-07-0924
- Kim, H., Chen, J. and Yu, X. (2007) Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science 316, 1202-1205 https://doi.org/10.1126/science.1139621
- Sobhian, B., Shao, G., Lilli, D. R., Culhane, A. C., Moreau, L. A., Xia, B., Livingston, D. M. and Greenberg, R. A. (2007) RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 316, 1198-1202 https://doi.org/10.1126/science.1139516
- Wang, B., Matsuoka, S., Ballif, B. A., Zhang, D., Smogorzewska, A., Gygi, S. P. and Elledge, S. J. (2007) Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science 316, 1194-1198 https://doi.org/10.1126/science.1139476
- Wang, B. and Elledge, S. J. (2007) Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage. Proc. Natl. Acad. Sci. U.S.A. 104, 20759-20763 https://doi.org/10.1073/pnas.0710061104
- Hjerpe, R. and Rodriguez, M. S. (2008) Efficient approaches for characterizing ubiquitinated proteins. Biochem. Soc. Trans. 36, 823-827 https://doi.org/10.1042/BST0360823
- Bilodeau, P. S., Urbanowski, J. L., Winistorfer, S. C. and Piper, R. C. (2002) The Vps27p Hse1p complex binds ubiquitin and mediates endosomal protein sorting. Nat. Cell Biol. 4, 534-539
- Howarth, J. L., Kelly, S., Keasey, M. P., Glover, C. P., Lee, Y. B., Mitrophanous, K., Chapple, J. P., Gallo, J. M., Cheetham, M. E. and Uney, J. B. (2007) Hsp40 molecules that target to the ubiquitin-proteasome system decrease inclusion formation in models of polyglutamine disease. Mol. Ther. 15, 1100-1105
- Uchiki, T., Kim, H. T., Zhai, B., Gygi, S. P., Johnston, J. A., O'Bryan, J. P. and Goldberg, A. L. (2009) The Ubiquitin-interacting Motif Protein, S5a, Is Ubiquitinated by All Types of Ubiquitin Ligases by a Mechanism Different from Typical Substrate Recognition. J. Biol. Chem. 284, 12622-12632 https://doi.org/10.1074/jbc.M900556200
- Hirano, S., Kawasaki, M., Ura, H., Kato, R., Raiborg, C., Stenmark, H. and Wakatsuki, S. (2006) Double-sided ubiquitin binding of Hrs-UIM in endosomal protein sorting. Nat. Struct. Mol. Biol. 13, 272-277 https://doi.org/10.1038/nsmb1051
- McCullough, J., Clague, M. J. and Urbe, S. (2004) AMSH is an endosome-associated ubiquitin isopeptidase. J. Cell. Biol. 166, 487-492 https://doi.org/10.1083/jcb.200401141
- Burnett, B., Li, F. and Pittman, R. N. (2003) The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. Hum. Mol. Genet. 12, 3195-3205 https://doi.org/10.1093/hmg/ddg344
- Regan-Klapisz, E., Sorokina, I., Voortman, J., de Keizer, P., Roovers, R. C., Verheesen, P., Urbe, S., Fallon, L., Fon, E. A., Verkleij, A., Benmerah, A. and van Bergen en Henegouwen, P. M. (2005) Ubiquilin recruits Eps15 into ubiquitin-rich cytoplasmic aggregates via a UIM-UBL interaction. J. Cell. Sci. 118, 4437-4450 https://doi.org/10.1242/jcs.02571
- Hurley, J. H., Lee, S. and Prag, G. (2006) Ubiquitin-binding domains. Biochem. J. 399, 361-372 https://doi.org/10.1042/BJ20061138
- Sims, J. J. and Cohen, R. E. (2009) Linkage-specific avidity defines the lysine 63-linked polyubiquitin-binding preference of rap 80. Mol. Cell. 33, 775-783
- Hoover, D. M. and Lubkowski, J. (2002) DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis. Nucleic. Acids. Res. 30, e43 https://doi.org/10.1093/nar/30.10.e43
- Sheffield, P., Garrard, S. and Derewenda, Z. (1999) Overcoming expression and purification problems of RhoGDI using a family of 'parallel' expression vectors. Protein Expr. Purif. 15, 34-39 https://doi.org/10.1006/prep.1998.1003
Cited by
- Differential polyubiquitin recognition by tandem ubiquitin binding domains of Rabex-5 vol.423, pp.4, 2012, https://doi.org/10.1016/j.bbrc.2012.06.032
- Effects of a Phosphomimetic Mutant of RAP80 on Linear Polyubiquitin Binding Probed by Calorimetric Analysis vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1285
- MDC1 is ubiquitylated on its tandem BRCT domain and directly binds RAP80 in a UBC13-dependent manner vol.10, pp.8, 2011, https://doi.org/10.1016/j.dnarep.2011.04.016
- Molecular Determinants of Polyubiquitin Recognition by Continuous Ubiquitin-Binding Domains of Rad18 vol.54, pp.12, 2015, https://doi.org/10.1021/bi5012546
- Factors forming the BRCA1-A complex orchestrate BRCA1 recruitment to the sites of DNA damage vol.48, pp.7, 2016, https://doi.org/10.1093/abbs/gmw047
- Polyubiquitin recognition by AtSAP5, an A20-type zinc finger containing protein from Arabidopsis thaliana vol.419, pp.2, 2012, https://doi.org/10.1016/j.bbrc.2012.02.044
- New conformations of linear polyubiquitin chains from crystallographic and solution-scattering studies expand the conformational space of polyubiquitin vol.72, pp.4, 2016, https://doi.org/10.1107/S2059798316001510