• 제목/요약/키워드: DNA structural change

검색결과 24건 처리시간 0.028초

Identification and Phylogeny of the Human Endogenous Retrovirus HERV-W LTR Family in Human Brain cDNA Library and Xq21.3 Region

  • KIM, HEUI-SOO;TIMOTHY J. CRO
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권3호
    • /
    • pp.508-513
    • /
    • 2002
  • Human endogenous retroviral long terminal repeats (LTRs) have been found to be coexpressed with sequences of genes located nearby. It has been suggested that the LTR elements have contributed to the structural change or genetic variation of human genome connected to various diseases. The HERV-W family has been identified in the cerebrospinal fluids and brains of individuals with schizophrenia. Using a cDNA library derived from a human brain, the HERV-W LTR elements were examined and five new LTR elements were identified. These elements were examined using a YAC clone panel from the Xq21.3 region linked to psychosis that was replicated on the Y chromosome after the separation of the chimpanzee and human lineages. Fourteen elements of the HERV-W LTR were identified in that region. Those LTR elements showed a high degree of sequence similarity ($91.8-99.5\%$) with previously reported HERV-W LTR. A phylogenetic tree obtained from the neighbor-joining method revealed that new HERV-W LTR elements were closely related to the AXt000960, AF072504, and AF072506 from the GenBank database. The data indicates that several copy numbers of the HERV-W LTR elements exist on the Xq21.3 region and are also expressed in the human brain. These LTR elements need to be further investigated as potential leads to neuropsychiatric diseases.

흰쥐 성상세포에서 산소농도의존성 유전자의 분리 (Isolation of a Hypoxia/Reoxygenation Regulatory Factor in Rat Astrocytes)

  • 박정애;송현석;이혜신;김규원
    • 약학회지
    • /
    • 제50권2호
    • /
    • pp.124-128
    • /
    • 2006
  • Astrocyte has emerged as an active regulator of brain function, which connects between blood vessels and neurons as well as is a structural component of the blood-brain barrier, From its structural characteristics, astrocyte seems to sensitively respond to oxygen tension, and, in turn, generate diverse cellular cascades. Therefore, to reveal astrocytlc events by oxygen change, we screened genes whose expressions are upregulated under reoxygenation after hypoxic stress using cDNA representational difference analysis (RDA) technique. Meteorin that regulates glial differentiation was isolated from primary cultured rat astrocytes as a hypoxia/reoxygenation regulatory factor. We cloned rat version of Meteorin (rMe-teorin) and determined full-size sequences of rMeteorin. In addition, RT-PCR analysis revealed that Meteorin was increased under reoxygenation in astrocytes and highly expressed in the developing brain. Collectively, these results suggest that Meteorin may regulate astrocyte-mediated effects in response to the change of oxygen tension in the pathophysiological states.

Molecular Cloning of Insulin-like Growth Factor-I (IGF-I) and IGF-II Genes of Marine Medaka (Oryzias dancena) and Their Expression in Response to Abrupt Transfer from Freshwater to Seawater

  • Kang, Yue-Jai;Kim, Ki-Hong
    • Fisheries and Aquatic Sciences
    • /
    • 제13권3호
    • /
    • pp.224-230
    • /
    • 2010
  • Growth hormone (GH) is known as one of the main osmoregulators in euryhaline teleosts during seawater (SW) adaptation. Many of the physiological actions of GH are mediated through insulin-like growth factor-I (IGF-I), and the GH/IGF-I axis is associated with osmoregulation of fish during SW acclimation. However, little information is available on the response of fish IGF-II to hyperosmotic stress. Here we present the first cloned IGF-I and IGF-II cDNAs of marine medaka, Oryzias dancena, and an analysis of the molecular characteristics of the genes. The marine medaka IGF-I cDNA is 1,340 bp long with a 257-bp 5' untranslated region (UTR), a 528 bp 3' UTR, and a 555-bp open reading frame (ORF) encoding a propeptide of 184 amino acid (aa) residues. The full-length marine medaka IGF-II cDNA consists of a 639 bp ORF encoding 212 aa, a 109 bp 5' UTR, and a 416 bp 3' UTR. Homology comparison of the deduced aa sequences with other IGF-Is and IGF-IIs showed that these genes in marine medaka shared high structural homology with orthologs from other teleost as well as mammalian species, suggesting high conservation of IGFs throughout vertebrates. The IGF-I mRNA level increased following transfer of marine medaka from freshwater (FW) to SW, and the expression level was higher than that of the control group, which was maintained in FW. This significantly elevated IGF-I level was maintained throughout the experiment (14 days), suggesting that in marine medaka, IGF-I is deeply involved in the adaptation to abrupt salinity change. In contrast to IGF-I, the increased level of marine medaka IGF-II mRNA was only maintained for a short period, and quickly returned a level similar to that of the control group, suggesting that marine medaka IGF-II might be a gene that responds to acute stress or one that produces a supplemental protein to assist with the osmoregulatory function of IGF-I during an early phase of salinity change.

Identification of a Regulatory Region within the luxR Structural Gene in a Marine Symbiotic Bacterium, Vibrio fischeri

  • Choi, Sang-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권3호
    • /
    • pp.176-182
    • /
    • 1994
  • The light-organ symbiont of pine cone fish, Vibrio fischeri, senses its presence in the host and responds to environmental changes by differentially expressing its symbiosis-related luminescence genes. The V. fischeri luminescence genes are activated by LuxR protein in the presence of an autoinducer. In an effort to elucidate the mechanism of regulation of luxR, a plasmid containing luxR was mutagenized in vitro with hydroxylamine and a luxR mutant plasmid was isolated by its ability to activate luminescence genes cloned in E. coli in the absence of the autoinducer. The specific base change identified by DNA sequencing was only single base transition at +78 from the transcriptional start of luxR. Based on a Western immunoblot analysis, the nucleotide change directed the synthesis of much higher level of LuxR protein without any amino acid substitutions. The results suggest that the region including the +78th base is presumably internal operator required for autorepression of luxR, and the increased cellular level of LuxR results in activation of luminescence genes by autoinducer independent fashion.

  • PDF

A Conserved Mechanism for Binding of p53 DNA-Binding Domain and Anti-Apoptotic Bcl-2 Family Proteins

  • Lee, Dong-Hwa;Ha, Ji-Hyang;Kim, Yul;Jang, Mi;Park, Sung Jean;Yoon, Ho Sup;Kim, Eun-Hee;Bae, Kwang-Hee;Park, Byoung Chul;Park, Sung Goo;Yi, Gwan-Su;Chi, Seung-Wook
    • Molecules and Cells
    • /
    • 제37권3호
    • /
    • pp.264-269
    • /
    • 2014
  • The molecular interaction between tumor suppressor p53 and the anti-apoptotic Bcl-2 family proteins plays an essential role in the transcription-independent apoptotic pathway of p53. In this study, we investigated the binding of p53 DNA-binding domain (p53DBD) with the anti-apoptotic Bcl-2 family proteins, Bcl-w, Mcl-1, and Bcl-2, using GST pull-down assay and NMR spectroscopy. The GST pull-down assays and NMR experiments demonstrated the direct binding of the p53DBD with Bcl-w, Mcl-1, and Bcl-2. Further, NMR chemical shift perturbation data showed that Bcl-w and Mcl-1 bind to the positively charged DNA-binding surface of p53DBD. Noticeably, the refined structural models of the complexes between p53DBD and Bcl-w, Mcl-1, and Bcl-2 showed that the binding mode of p53DBD is highly conserved among the anti-apoptotic Bcl-2 family proteins. Furthermore, the chemical shift perturbations on Bcl-w, Mcl-1, and Bcl-2 induced by p53DBD binding occurred not only at the p53DBD-binding acidic region but also at the BH3 peptide-binding pocket, which suggests an allosteric conformational change similar to that observed in Bcl-$X_L$. Taken altogether, our results revealed a structural basis for a conserved binding mechanism between p53DBD and the anti-apoptotic Bcl-2 family proteins, which shed light on to the molecular understanding of the transcription-independent apoptosis pathway of p53.

효모 감수분열과정에서의 유전자 재조합 기전 특이적 DNA 중간체의 구조 변화 (Identification of Meiotic Recombination Intermediates in Saccharomyces cerevisiae)

  • 성영진;윤상욱;김근필
    • 미생물학회지
    • /
    • 제49권1호
    • /
    • pp.1-7
    • /
    • 2013
  • 유전자 재조합체는 상동염색체간의 예정된 DNA 가닥 전이와 교환이 이루어지는 상동염색체 재조합 과정에 의하여 생성된다. 이 재조합 경로는 DNA 이중 가닥 절단(double-strand breaks, DSBs)에 의해서 개시되며, 전이 과정의 중간단계에서 DNA의 구조적 변이 중간체인 단일 가닥 침투(single-end invasions, SEIs)와 이중 홀리데이 접합(double-Holliday junctions, dHJs)이 형성되어 교차성(crossover, CO) 혹은 비교차성(non-crossover, NCO) 결과물이 만들어진다. 본 연구는 이중 가닥 절단, 단일 가닥 침투, 이중 홀리데이 접합과 같은 재조합 중간체와 재조합 결과물의 구조분석에 초점을 두고, 이를 출아효모에서 인위적으로 이중 가닥 절단을 발생시킬 수 있는 HIS4LEU2 "hot spot" 을 이용한 물리적 분석방법으로 감수분열 재조합 중간체를 규명하였다. 물리적 분석을 위하여 동조화 된 세포에 감수분열을 유도한 후 hot spot 자리를 인식하는 제한효소를 처리하면, 재조합 중간체를 형성하고 있는 DNA 단편들을 Southern 분석법을 통해 탐지 및 정량 할 수 있다. 본 연구는 이 시스템으로 감수분열에서 이중가닥 절단으로부터 기인하는 단일 가닥 침투, 이중 홀리데이 접합 그리고 교차성/비교차성 재조합체로 전이되는 DNA의 구조 다형을 분석할 수 있음을 제시한다.

Nucleohistone과 DNase 1 과의 相互作用의 Cooperativity 및 이에 미치는 Spermine과 Dansylation 效果 (Cooperativity of the Interaction of Nucleohistone and DNase 1, and Effects of Spermine and Dansylation on It)

  • 이찬용;고동성
    • 대한화학회지
    • /
    • 제29권3호
    • /
    • pp.304-310
    • /
    • 1985
  • 송아지 흉선 nucleohistone의 DNase 1에 對한 susceptibility와 相互作用의 cooperativity에 미치는 spermine의 效果를 nucleostone의 構造變移와 關聯시켜 調査하였다. 이들 data로 부터 nucleohistone은 遊離 DNA와는 對照的으로 spermine에 의하여 monomoclecular condensation을 일으키지 않고 intermolecular aggregation을 이루며 nucleohistone의 DNase 1과의 相互作用 cooperativity가 spermine에 의하여 增加됨을 推理할 수 있다. Nucleohistine의 histone 部分의 cooperativity에 關한 機能的 役割을 究明하기 위하여 histone 部分을 단실化시킨 DNS-nucleohistone을 製造하여 DNase 1 과의 相互作用을 調査하여 보았는바 negative cooperativity로 나타났다. 이로 부터 nucleohistone의 histone部分은 nucleohistone의 cooperativity에 影響을 미치리라고 推理할 수 있다.

  • PDF

Comparative Genomics of T-complex protein 10 like in Humans and Chimpanzees

  • Kim, Il-Chul;Kim, Dae-Soo;Kim, Dae-Won;Choi, Sang-Haeng;Choi, Han-Ho;Chae, Sung-Hwa;Park, Hong-Seog
    • Genomics & Informatics
    • /
    • 제3권2호
    • /
    • pp.61-65
    • /
    • 2005
  • Comparing 231 genes on chimpanzee chromosome 22 with their orthologous on human chromosome 21, we have found that 15 orthologs have indels within their coding sequences. It was rather surprising that significant number of genes have changed by indel, despite the shorter time since their divergence and led us hypothesize that indels and structural changes may represent one of the major mechanism of proteome evolution in the higher primates. Human T-complex protein 10 like (TCP 10L) is a representative having indel within its coding sequence. Gene structure of human TCP10L compared with chimpanzee TCP10L gene showed 16 base pair difference in genomic DNA. As a result of the indel, frame shift mutation occurs in coding sequence (CDS) and human TCP10L express longer polypeptide of 21 amino acid residues than that of chimpanzee. Our prediction found that the indel may affect to dramatic change of secondary protein structure between human and chimpanzee TCP10L. Especially, the structural changes in the C-terminal region of TCP10L protein may affect on the interacting potential to other proteins rather than DNA binding function of the protein. Through these changes, TCP10L might influence gene expression profiles in liver and testis and subsequently influence the physiological changes required in primate evolution.

고등식물의 유전자 발현의 조절 (Regulation of Gene Expression in Higher Plant)

  • 심웅섭
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1987년도 식물생명공학 심포지움 논문집 Proceedings of Symposia on Plant Biotechnology
    • /
    • pp.241-260
    • /
    • 1987
  • The regulatory mechanisms of gene expression in higher plant were not ascertained in detail because the genome size is very large and complex. However, the above-mentioned study is remarkably progressed in parallel with development of DNA recombinant technology and plant vector system. Some research results connected with the mechanisms could be summarized as follows. 1. Many plant genes including chloroplast genes are cloned. 2. The structures of some regulatory regions of gene expression are determined, and it is confirmed that new regulatory units are made by transposable elements. 3. Plant gene expression is regulated not only at transcriptional level but also at translational level. 4. The factors that regulate plant gene expression could be divided as two categorys. One is endogenous elements including the structural change of chromatin during development stage and tissue differentiation. The other is environmental stimulations such as air, water, heat, salts and light. However, some sufficient research-aid fund is essential in order to study the regulatory mechanisms of gene expression more systematically.

  • PDF

Thermal Denaturation of the Apo-cyclic AMP Receptor Protein and Noncovalent Interactions between Its Domains

  • Won, Hyung-Sik;Seo, Min-Duk;Ko, Hyun-Suk;Choi, Wahn Soo;Lee, Bong-Jin
    • Molecules and Cells
    • /
    • 제26권1호
    • /
    • pp.61-66
    • /
    • 2008
  • Cyclic AMP receptor protein (CRP) is allosterically activated by cAMP and functions as a global transcription regulator in enteric bacteria. Structural information on CRP in the absence of cAMP (apo-CRP) is essential to fully understand its allosteric behavior. In this study we demonstrated interdomain interactions in apo-CRP, using a comparative thermodynamic approach to the intact protein and its isolated domains, which were prepared either by limited proteolysis or using recombinant DNA. Thermal denaturation of the intact apo-CRP, monitored by differential scanning calorimetry, revealed an apparently single cooperative transition with a slight asymmetry. Combined with circular dichroism and fluorescence analysis, the thermal denaturation of apo-CRP could be interpreted as a coupled process involving two individual transitions, each attributable to a structural domain. When isolated individually, both of the domains exhibited significantly altered thermal behavior, thus pointing to the existence of non-covalent interdomain interactions in the intact apo-CRP. These observations suggest that the allosteric conformational change of CRP upon binding to cAMP is achieved by perturbing or modifying pre-existing interdomain interactions. They also underline the effectiveness of a comparative approach using calorimetric and structural probes for studying the thermodynamics of a protein.