DOI QR코드

DOI QR Code

Identification of Meiotic Recombination Intermediates in Saccharomyces cerevisiae

효모 감수분열과정에서의 유전자 재조합 기전 특이적 DNA 중간체의 구조 변화

  • 성영진 (차의과학대학교 의생명과학과) ;
  • 윤상욱 (중앙대학교 자연과학대학 생명과학부) ;
  • 김근필 (중앙대학교 자연과학대학 생명과학부)
  • Received : 2013.01.15
  • Accepted : 2013.03.08
  • Published : 2013.03.31

Abstract

During meiosis, genetic recombinants are formed by homologous recombination accompanying with the programmed double-strand breaks (DSBs) and strand exchanges between homologous chromosomes. The mechanism is generated by recombination intermediates such as single-end invasions (SEIs) and double-Holliday junctions (dHJs), and followed by crossover (CO) or non-crossover (NCO) products. Our study was focused on the analysis of meiotic recombination intermediates (DSBs, SEIs, and dHJs) and final recombination products (CO and NCO). We identified these meiotic recombination intermediates using DNA physical analysis under HIS4LEU2 "hot spot" system in budding yeast, Saccharomyces cerevisiae. For DNA physical analysis, when the hot spot locus is recognized by restriction enzyme from synchronous meiotic cells, the fragmented DNA that are forming recombination intermediates can be detected and quantified through Southern hybridization analysis. Our study suggests that this system can analyze the structural change of recombination intermediates during DSB-SEI transition, double-Holiday junctions and crossover/non-crossover products in meiosis.

유전자 재조합체는 상동염색체간의 예정된 DNA 가닥 전이와 교환이 이루어지는 상동염색체 재조합 과정에 의하여 생성된다. 이 재조합 경로는 DNA 이중 가닥 절단(double-strand breaks, DSBs)에 의해서 개시되며, 전이 과정의 중간단계에서 DNA의 구조적 변이 중간체인 단일 가닥 침투(single-end invasions, SEIs)와 이중 홀리데이 접합(double-Holliday junctions, dHJs)이 형성되어 교차성(crossover, CO) 혹은 비교차성(non-crossover, NCO) 결과물이 만들어진다. 본 연구는 이중 가닥 절단, 단일 가닥 침투, 이중 홀리데이 접합과 같은 재조합 중간체와 재조합 결과물의 구조분석에 초점을 두고, 이를 출아효모에서 인위적으로 이중 가닥 절단을 발생시킬 수 있는 HIS4LEU2 "hot spot" 을 이용한 물리적 분석방법으로 감수분열 재조합 중간체를 규명하였다. 물리적 분석을 위하여 동조화 된 세포에 감수분열을 유도한 후 hot spot 자리를 인식하는 제한효소를 처리하면, 재조합 중간체를 형성하고 있는 DNA 단편들을 Southern 분석법을 통해 탐지 및 정량 할 수 있다. 본 연구는 이 시스템으로 감수분열에서 이중가닥 절단으로부터 기인하는 단일 가닥 침투, 이중 홀리데이 접합 그리고 교차성/비교차성 재조합체로 전이되는 DNA의 구조 다형을 분석할 수 있음을 제시한다.

Keywords

References

  1. Cao, L., Alani, E., and Kleckner, N. 1990. A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell. 61, 1089-1101. https://doi.org/10.1016/0092-8674(90)90072-M
  2. Croes, A.F. 1967. Induction of meiosis in yeast. II. Metabolic factors leading to meiosis. Planta. 76, 227-237. https://doi.org/10.1007/BF00409814
  3. Fowell, R.R. 1969. Sporulation and hybridization of yeasts, pp. 303-386. In Rose, A.H. and Harrison, J.S. (eds.), The yeasts. vol. 1. Academic Press, Inc. New York, N.Y., USA.
  4. Freese, E.B., Chu, M.I., and Freese, E. 1982. Initiation of yeast sporulation by partial carbon, nitrogen, or phosphate deprivation. J. Bacteriol. 149, 840-851.
  5. Goldstein, A.L. and McCusker, J.H. 1999. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15, 1541-1553. https://doi.org/10.1002/(SICI)1097-0061(199910)15:14<1541::AID-YEA476>3.0.CO;2-K
  6. Hunter, N. 2006. Meiotic Recombination. Molecular Genetics of Recombination, pp. 381-442. In Aguilera, A. and Rothstein, R. (eds.), Topics in Current Genetics, Springer-Verlag, Heidelberg, Germany.
  7. Hunter, N. and Kleckner, N. 2001. The single-end invasion: an asymmetric intermediate at the double-strand break to doubleholliday junction transition of meiotic recombination. Cell. 106, 59-70. https://doi.org/10.1016/S0092-8674(01)00430-5
  8. Keeney, S. 2001. The mechanism and control of meiotic recombination initiation. Curr. Top. Dev. Biol. 52, 1-53. https://doi.org/10.1016/S0070-2153(01)52008-6
  9. Keeney, S. and Kleckner, N. 1997. Meiosis specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell. 88, 375-384. https://doi.org/10.1016/S0092-8674(00)81876-0
  10. Kim, K.P., Weiner, B.M., Zhang, L., Jordan, A., Dekker, J., and Kleckner, N. 2010. Sister cohesion and structural axis components mediate homolog bias of meiotic recombination. Cell. 143, 924-937. https://doi.org/10.1016/j.cell.2010.11.015
  11. McCusker, J.H. and Haber, J.H. 1977. Efficient sporulation of yeast in media buffered near pH 6. J. Bacteriol. 132, 180-185.
  12. Miller, J.J. 1957. Metabolism of yeast sporulation. II. Stimulation and inhibition by monosaccharides. Can. J. Microbiol. 3, 81-90. https://doi.org/10.1139/m57-010
  13. Neale, M.J., Pan, J., and Keeney. S. 2005. Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436, 1053-1057. https://doi.org/10.1038/nature03872
  14. Oh, S.D., Lao, J.P., Hwang, P.Y., Taylor, A.F., Smith, G.R., and Hunter, N. 2007. BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules. Cell. 130, 259-272. https://doi.org/10.1016/j.cell.2007.05.035
  15. Roth, R. and Halvorson, H.O. 1969. Sporulation of yeast harvested during logarithmic growth. J. Bacteriol. 98, 831-832.
  16. Schwacha, A. and Kleckner, N. 1997. Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog only pathway. Cell. 90, 1123-1135. https://doi.org/10.1016/S0092-8674(00)80378-5
  17. Wanat, J.J., Kim, K.P., Koszul, R., Zanders, S., Weiner, B., Kleckner, N., and Alani, E. 2008. Csm4, in collaboration with Ndj1, mediates telomere led chromosome dynamics and recombination during yeast meiosis. PLoS Genet. 4, e1000188. doi:10.1371/journal.pgen.1000188.
  18. Zickler, D. and Kleckner, N. 1999. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet. 33, 603-754. https://doi.org/10.1146/annurev.genet.33.1.603