• Title/Summary/Keyword: DNA security

Search Result 47, Processing Time 0.019 seconds

DNA Sequences Compression using Repeat technique and Selective Encryption using modified Huffman's Technique

  • Syed Mahamud Hossein; Debashis De; Pradeep Kumar Das Mohapatra
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.8
    • /
    • pp.85-104
    • /
    • 2024
  • The DNA (Deoxyribonucleic Acid) database size increases tremendously transmuting from millions to billions in a year. Ergo for storing, probing the DNA database requires efficient lossless compression and encryption algorithm for secure communication. The DNA short pattern repetitions are of paramount characteristics in biological sequences. This algorithm is predicated on probing exact reiterate, substring substitute by corresponding ASCII code and engender a Library file, as a result get cumulating of the data stream. In this technique the data is secured utilizing ASCII value and engendering Library file which acts as a signature. The security of information is the most challenging question with veneration to the communication perspective. The selective encryption method is used for security purpose, this technique is applied on compressed data or in the library file or in both files. The fractional part of a message is encrypted in the selective encryption method keeping the remaining part unchanged, this is very paramount with reference to selective encryption system. The Huffman's algorithm is applied in the output of the first phase reiterate technique, including transmuting the Huffman's tree level position and node position for encryption. The mass demand is the minimum storage requirement and computation cost. Time and space complexity of Repeat algorithm are O(N2) and O(N). Time and space complexity of Huffman algorithm are O(n log n) and O(n log n). The artificial data of equipollent length is additionally tested by this algorithm. This modified Huffman technique reduces the compression rate & ratio. The experimental result shows that only 58% to 100% encryption on actual file is done when above 99% modification is in actual file can be observed and compression rate is 1.97bits/base.

Robust DNA Watermarking based on Coding DNA Sequence (부호 영역 DNA 시퀀스 기반 강인한 DNA 워터마킹)

  • Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.123-133
    • /
    • 2012
  • This paper discuss about DNA watermarking using coding DNA sequence (CDS) for the authentication, the privacy protection, or the prevention of illegal copy and mutation of DNA sequence and propose a DNA watermarking scheme with the mutation robustness and the animo acid preservation. The proposed scheme selects a number of codons at the regular singularity in coding regions for the embedding target and embeds the watermark for watermarked codons and original codons to be transcribed to the same amino acids. DNA base sequence is the string of 4 characters, {A,G,C,T} ({A,G,C,U} in RNA). We design the codon coding table suitable to watermarking signal processing and transform the codon sequence to integer numerical sequence by this table and re-transform this sequence to floating numerical sequence of circular angle. A codon consists of a consecutive of three bases and 64 codons are transcribed to one from 20 amino acids. We substitute the angle of selected codon to one among the angle range with the same animo acid, which is determined by the watermark bit and the angle difference of adjacent codons. From in silico experiment by using HEXA and ANG sequences, we verified that the proposed scheme is more robust to silent and missense mutations than the conventional scheme and preserve the amino acids of the watermarked codons.

Trends in Device DNA Technology Trend for Sensor Devices (센서 기반의 디바이스 DNA 기술 동향)

  • Kim, Juhan;Lee, Sangjae;Oh, Mi Kyung;Kang, Yousung
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • Just as it is possible to distinguish people by using physical features, such as fingerprints, irises, veins, and faces, and behavioral features, such as voice, gait, keyboard input pattern, and signatures, the an IoT device includes various features that cannot be replicated. For example, there are differences in the physical structure of the chip, differences in computation time of the devices or circuits, differences in residual data when the SDRAM is turned on and off, and minute differences in sensor sensing results. Because of these differences, Sensor data can be collected and analyzed, based on these differences, to identify features that can classify the sensors and define them as sensor-based device DNA technology. As Similar to the biometrics, such as human fingerprints and irises, can be authenticatedused for authentication, sensor-based device DNA can be used to authenticate sensors and generate cryptographic keys that can be used for security.

Multi User-Authentication System using One Time-Pseudo Random Number and Personal DNA STR Information in RFID Smart Card (RFID 스마트카드내 DNA STR Information과 일회용 의사난수를 사용한 다중 사용자 인증시스템)

  • Sung, Soon-Hwa;Kong, Eun-Bae
    • The KIPS Transactions:PartC
    • /
    • v.10C no.6
    • /
    • pp.747-754
    • /
    • 2003
  • Thia paper suggests a milti user-authentication system comprises that DNA biometric informatiom, owner's RFID(Radio Frequency Identification) smartcard of hardware token, and PKI digital signqture of software. This system improved items proposed in [1] as follows : this mechanism provides one RFID smartcard instead of two user-authentication smartcard(the biometric registered seal card and the DNA personal ID card), and solbers user information exposure as RFID of low proce when the card is lost. In addition, this can be perfect multi user-autentication system to enable identification even in cases such as identical twins, the DNA collected from the blood of patient who has undergone a medical procedure involving blood replacement and the DNA of the blood donor, mutation in the DNA base of cancer cells and other cells. Therefore, the proposed system is applied to terminal log-on with RFID smart card that stores accurate digital DNA biometric information instead of present biometric user-authentication system with the card is lost, which doesn't expose any personal DNA information. The security of PKI digital signature private key can be improved because secure pseudo random number generator can generate infinite one-time pseudo randon number corresponding to a user ID to keep private key of PKI digital signature securely whenever authenticated users access a system. Un addition, this user-authentication system can be used in credit card, resident card, passport, etc. acceletating the use of biometric RFID smart' card. The security of proposed system is shown by statistical anaysis.

DNA Watermarking Method based on Random Codon Circular Code (랜덤 코돈 원형 부호 기반의 DNA 워터마킹)

  • Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.3
    • /
    • pp.318-329
    • /
    • 2013
  • This paper proposes a DNA watermarking method for the privacy protection and the prevention of illegal copy. The proposed method allocates codons to random circular angles by using random mapping table and selects triplet codons for embedding target with the help of the Lipschitz regularity value of local modulus maxima of codon circular angles. Then the watermark is embedded into circular angles of triplet codons without changing the codes of amino acids in a DNA. The length and location of target triplet codons depend on the random mapping table for 64 codons that includes start and stop codons. This table is used as the watermark key and can be applied on any codon sequence regardless of the length of sequence. If this table is unknown, it is very difficult to detect the length and location of them for extracting the watermark. We evaluated our method and DNA-crypt watermarking of Heider method on the condition of similar capacity. From evaluation results, we verified that our method has lower base changing rate than DNA-crypt and has lower bit error rate on point mutation and insertions/deletions than DNA-crypt. Furthermore, we verified that the entropy of random mapping table and the locaton of triplet codons is high, meaning that the watermark security has high level.

DNA-functionalized single-walled carbon nanotube-based sensor array for gas monitoring

  • Zhang, Wenjun;Liu, Yu;Wang, Ming. L
    • Smart Structures and Systems
    • /
    • v.12 no.1
    • /
    • pp.73-95
    • /
    • 2013
  • Nine deoxyribonucleic acid (DNA) sequences were used to functionalize single-walled carbon nanotube (SWNT) sensors to detect the trace amount of methanol, acetone, and HCl in vapor. DNA 24 Ma (24 randomly arranged nitrogenous bases with one amine at each end of it) decorated SWNT sensor and DNA 24 A (only adenine (A) base with a length of 24) decorated SWNT sensor have demonstrated the largest sensing responses towards acetone and HCl, respectively. On the other hand, for the DNA GT decorated SWNT sensors with different sequence lengths, the optimum DNA sequence length for acetone and HCl sensing is 32 and 8, separately. The detection of methanol, acetone, and HCl have identified that DNA functionalized SWNT sensors exhibit great selectivity, sensitivity, and repeatability with an accuracy of more than 90%. Further, a sensor array composed of SWNT functionalized with various DNA sequences was utilized to identify acetone and HCl through pattern recognition. The sensor array is a combination of four different DNA functionalized SWNT sensors and two bare SWNT sensors (work as reference). This wireless sensing system has enabled real-time gas monitoring and air quality assurance for safety and security.

Rejection of DNA, Protein-DNA Complexes and Chromatin by Hollow Fiber Membranes

  • Higuchi, Akon;Hara, Mariko;Sato, Tetsuo;Ishikawa, Gen;Nakano, Hiroo;Satoh, Sakae
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.10a
    • /
    • pp.18-21
    • /
    • 1996
  • Virus and DNA removal in bio-drug manufacturing processes has received a great deal of attention in recent years. Removing of a virus using a membrane process is a promising method, because inactivated virus can be removed from the bio-drug and the process can be used as an additional and security inactivation after the method of general heat-inactivation of the virus in the bio-drug. The FDA and the biopharmaceutical industry have recently announced strict guidelines for impurities of virus and DNA contamination. The regulatory guidelines on residual amounts of DNA in mammalian cell culture products require DNA contamination of less than 100 pg/dose. Therefore, permeation and rejection of DNA through the porous membranes have become important in the application of DNA removal in bio-drug manufacturing using membrane technology. In this study, the permeation of DNA and chromatin through regenerated cellulose hollow fibers that have a mean pore diameter of 15 nm was investigated.

  • PDF

DNA Information Hiding Method for DNA Data Storage (DNA 데이터 저장을 위한 DNA 정보 은닉 기법)

  • Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.118-127
    • /
    • 2014
  • DNA data storage refers to any technique for storing massive digital data in base sequence of DNA and has been recognized as the future storage medium recently. This paper presents an information hiding method for DNA data storage that the massive data is hidden in non-coding strand based on DNA steganography. Our method maps the encrypted data to the data base sequence using the numerical mapping table and then hides it in the non-coding strand using the key that consists of the seed and sector length. Therefore, our method can preserve the protein, extract the hidden data without the knowledge of host DNA sequence, and detect the position of mutation error. Experimental results verify that our method has more high data capacity than conventional methods and also detects the positions of mutation errors by the parity bases.

The Secure Key Store to prevent leakage accident of a Private Key and a Certificate (인증서와 개인키 유출 방지를 위한 보안키 저장소 Secure Key Store)

  • Park, Young-Jin;Kim, Seon-Jong;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.1
    • /
    • pp.31-40
    • /
    • 2014
  • In Korea, the Public Key Infrastructure (PKI) has been introduced. For secure information transmission and identification, the electronic signature authorization system of a certificate-based is built, and then the service provide.The certificate is stored in location what users can easily access and copy. Thus, there is a risk that can be stolen by malware or web account hacking. In addition, private key passwords can be exposed by the logging tool, after keyboard security features are disabled. Each of these security weaknesses is a potential conduit for identity theft, property/asset theft, and theft of the actual certificates. The present study proposes a method to prevent the private key file access illegally. When a certificate is stored, the private key is encrypted by the dependent element of the device, and it is stored securely. If private key leakage occurs, the retrieved key could not be used on other devices.

Privacy-Preserving DNA Matching Protocol (프라이버시를 보호하는 DNA 매칭 프로토콜)

  • Noh, Geontae
    • Journal of Internet Computing and Services
    • /
    • v.19 no.2
    • /
    • pp.1-7
    • /
    • 2018
  • Due to advances in DNA sequencing technologies, its medical value continues to grow. However, once genome data leaked, it cannot be revoked, and disclosure of personal genome information impacts a large group of individuals. Therefore, secure techniques for managing genomic big data should be developed. We first propose a privacy-preserving inner product protocol for large data sets using the homomorphic encryption of Gentry et al., and then we introduce an efficient privacy-preserving DNA matching protocol based on the proposed protocol. Our efficient protocol satisfies the requirements of correctness, confidentiality, and privacy.