• Title/Summary/Keyword: DNA Fragmentation

Search Result 761, Processing Time 0.031 seconds

MHY2251, a New SIRT1 Inhibitor, Induces Apoptosis via JNK/p53 Pathway in HCT116 Human Colorectal Cancer Cells

  • Yong Jung Kang;Young Hoon Kwon;Jung Yoon Jang;Jun Ho Lee;Sanggwon Lee;Yujin Park;Hyung Ryong Moon;Hae Young Chung;Nam Deuk Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.73-81
    • /
    • 2023
  • Sirtuins (SIRTs) belong to the nicotinamide adenine dinucleotide (NAD+)-dependent class III histone deacetylase family. They are key regulators of cellular and physiological processes, such as cell survival, senescence, differentiation, DNA damage and stress response, cellular metabolism, and aging. SIRTs also influence carcinogenesis, making them potential targets for anticancer therapeutic strategies. In this study, we investigated the anticancer properties and underlying molecular mechanisms of a novel SIRT1 inhibitor, MHY2251, in human colorectal cancer (CRC) cells. MHY2251 reduced the viability of various human CRC cell lines, especially those with wild-type TP53. MHY2251 inhibited SIRT1 activity and SIRT1/2 protein expression, while promoting p53 acetylation, which is a target of SIRT1 in HCT116 cells. MHY2251 treatment triggered apoptosis in HCT116 cells. It increased the percentage of late apoptotic cells and the sub-G1 fraction (as detected by flow cytometric analysis) and induced DNA fragmentation. In addition, MHY2251 upregulated the expression of FasL and Fas, altered the ratio of Bax/Bcl-2, downregulated the levels of pro-caspase-8, -9, and -3 proteins, and induced subsequent poly(ADP-ribose) polymerase cleavage. The induction of apoptosis by MHY2251 was related to the activation of the caspase cascade, which was significantly attenuated by pre-treatment with Z-VAD-FMK, a pan-caspase inhibitor. Furthermore, MHY2251 stimulated the phosphorylation of c-Jun N-terminal kinase (JNK), and MHY2251-triggered apoptosis was blocked by pre-treatment with SP600125, a JNK inhibitor. This finding indicated the specific involvement of JNK in MHY2251-induced apoptosis. MHY2251 shows considerable potential as a therapeutic agent for targeting human CRC via the inhibition of SIRT1 and activation of JNK/p53 pathway.

Mechanism Underlying a Proteasome Inhibitor, Lactacystin-Induced Apoptosis on SCC25 Human Tongue Squamous Cell Carcinoma Cells (사람혀편평상피세포암종세포에서 proteasome 억제제인 lactacystin에 의해 유도된 세포자멸사의 기전에 대한 연구)

  • Baek, Chul-Jung;Kim, Gyoo-Cheon;Kim, In-Ryoung;Lee, Seung-Eun;Kwak, Hyun-Ho;Park, Bong-Soo;Tae, Il-Ho;Ko, Myung-Yun;Ahn, Yong-Woo
    • Journal of Oral Medicine and Pain
    • /
    • v.34 no.3
    • /
    • pp.261-276
    • /
    • 2009
  • Lactacystin, a microbial natural product synthesized by Streptomyces, has been commonly used as a selective proteasome inhibitor in many studies. Proteasome inhibitors is known to be preventing the proliferation of cancer cells in vivo as well as in vitro. Furthermore, proteasome inhibitors, as single or combined with other anticancer agents, are suggested as a new class of potential anticancer agents. This study was undertaken to examine in vitro effects of cytotoxicity and growth inhibition, and the molecular mechanism underlying induction of apoptosis in SCC25 human tongue sqaumous cell carcinoma cell line treated with lactacystin. The viability of SCC25 cells, human normal keratinocytes (HaCaT cells) and human gingiva fibroblasts (HGF-1 cells), and the growth inhibition of SCC25 cells were assessed by MTT assay and clonogenic assay respectively. The hoechst staining, hemacolor staining and TUNEL staining were conducted to observe SCC25 cells undergoing apoptosis. SCC25 cells were treated with lactacystin, and Western blotting, immunocytochemistry, confocal microscopy, FAScan flow cytometry, MMP activity, and proteasome activity were performed. Lactacystin treatment of SCC25 cells resulted in a time- and does-dependent decrease of cell viability and a does-dependent inhibition of cell growth, and induced apoptotic cell death. Interestingly, lactacytin remarkably revealed cytotoxicity in SCC25 cells but not normal cells. And tested SCC25 cells showed several lines of apoptotic manifestation such as nuclear condensation, DNA fragmentation, the reduction of MMP and proteasome activity, the decrease of DNA contents, the release of cytochrome c into cytosol, the translocation of AIF and DFF40 (CAD) onto nuclei, the up-regulation of Bax, and the activation of caspase-7, caspase-3, PARP, lamin A/C and DFF45 (ICAD). Flow cytometric analysis revealed that lactacystin resulted in G1 arrest in cell cycle progression which was associated with up-regulation in the protein expression of CDK inhibitors, $p21^{WAF1/CIP1}$ and $p27^{KIP1}$. We presented data indicating that lactacystin induces G1 cell cycle arrest and apoptois via proteasome, mitochondria and caspase pathway in SCC25 cells. Therefore our data provide the possibility that lactacystin could be as a novel therapeutic strategy for human tongue squamous cell carcinoma.

Antioxidant activity of ethanol extract of Lycium barbarum's leaf with removal of chlorophyll (클로로필을 제거한 영하구기엽 에탄올 추출물의 항산화 활성)

  • Kim, Ji Eun;Bae, Su Mi;Nam, You Ree;Bae, Eun Young;Ly, Sun Yung
    • Journal of Nutrition and Health
    • /
    • v.52 no.1
    • /
    • pp.26-35
    • /
    • 2019
  • Purpose: The aim of this study was to estimate the antioxidant activities of 50%, 70%, and 100% ethanol extracts of Lycium barbarum leaf and chlorophyll removal extract. Methods: The antioxidant activities were estimated by measuring total polyphenol content and by assays of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfate) (ABTS) radical scavenging activities and ferric reducing antioxidant power (FRAP). In addition, reactive oxygen species (ROS) production, DNA fragmentation, and antioxidant enzyme (superoxide dismutase and catalase) activities of the extracts were measured in hydrogen peroxide ($H_2O_2$)-stressed HepG2 cells. Results: The total polyphenol content, DPPH and ABTS radical scavenging activities, and FRAP value of the extracts increased in an ethanol concentration-dependent manner. The antioxidant activities of the chlorophyll-removal extracts were much higher than those of the chlorophyll-containing extracts. Cytotoxicity was not observed in HepG2 cells with extracts up to $1,000{\mu}g/mL$. All extracts inhibited ROS production in a concentration-dependent manner from $31.3{\mu}g/mL$ and inhibited DNA damage at $250{\mu}g/mL$. The SOD and catalase activities of cell lines treated with the extracts and $H_2O_2$ were similar to those of normal cells, indicating a strong protective effect. Conclusion: Lycium barbarum leaf extracts had high antioxidant activities and protected $H_2O_2$-stressed HepG2 cells. Since the chlorophyll-removal extract exhibited higher antioxidant activities than the chlorophyll-containing ones and the cytoprotective effect was similar, chlorophyll removal extract of Lycium barbarum leaf could be developed as ingredients of functional food and cosmetics.

Effects of Gonadotropin Releasing Hormone on Steroidogenesis and Apoptosis of Human Granulosa-Lutein Cells (생식샘자극호르몬분비호르몬이 사람 과립-황체화 세포의 스테로이드 생성과 세포자연사에 미치는 영향)

  • Lee, Hyo-Jin;Yang, Hyun-Won
    • Development and Reproduction
    • /
    • v.13 no.4
    • /
    • pp.353-362
    • /
    • 2009
  • GnRH and its receptor are known to express locally in the ovary and to regulate the ovarian function by affecting on granulosa and lutein cells. It has been reported that GnRH directly causes apoptosis in the granulosa and lutein cells of the ovary. However, whether the apoptosis of the cells by GnRH is recovered by FSH as an anti-apoptotic factor is not yet known. In this study, we evaluated the apoptosis and the production of progesterone $(P_4)$ and estradiol $(E_2)$ after treatment with 5, 50, and 100 ng/$m\ell$ GnRH and 1 IU/ml FSH in the granulosa-lutein cells that are obtained during oocyte-retrieval for IVF-ET. Results of DNA fragment analysis and TUNEL assay demonstrated that DNA fragmentation and the rate of apoptotic cells were increased in a dose-dependent manner showing a significant increase in the cells treated with 100 ng/$m\ell$ GnRH. In addition, we found that FSH suppresses the apoptosis of the cells induced by GnRH. In the results of chemiluminescence assay for $P_4$ and $E_2$, $P_4$ production was decreased by GnRH treatment, whereas $E_2$ production was not changed. We also demonstrated that FSH inhibits the suppressive effect of GnRH on $P_4$ production as the result of apoptosis. The present results suggest that GnRH agonist using in ovarian hyperstimulation protocol might induce the dysfunction of the ovary, but its function could be recovered by FSH. These results also will be expected to use as the basic data to elucidate the physiological role of GnRH and to develop new ovarian hyperstimulation protocols for IVF-ET.

  • PDF

Effects of Cortisol on the Steroidogenesis and the Apoptosis of Human Granulosa-Lutein Cells (Cortisol이 사람 과립-황체화 세포의 스테로이드 생성과 세포자연사에 미치는 영향)

  • Kim, Jin-Hee;Yang, Hyun-Won
    • Development and Reproduction
    • /
    • v.13 no.4
    • /
    • pp.329-339
    • /
    • 2009
  • Cortisol is present in high concentration in the ovary and its receptor is expressed in the ovarian cells. Moreover, cortisol is known to have a role in steroid synthesis and cell metabolism in human granulosa and lutein cells. However, little is known of the role of cortisol presenting in high concentration in the follicles after LH surge on the granulosa-lutein cells. Therefore, the this study we evaluated the apoptosis and the production of progesterone $(P_4)$ and estradiol $(E_2)$ in the granulosa-lutein cells that are obtained during oocyte-retrieval after treatment with 5, 50, and $500{\mu}g/m\ell$ cortisol and 1 IU/$m\ell$ FSH. Results of DNA fragment analysis and TUNEL assay demonstrated that DNA fragmentation and the rate of apoptotic cells were increased in a dose-dependent manner showing a significant increase in 50 and $500{\mu}g/m\ell$ cortisol treated cells. We found, however, that FSH did not suppress the apoptosis of the cells induced by cortisol. In the results of chemiluminescence assay for $P_4$ and $E_2$, $P_4$ production was decreased by cortisol treatment, whereas $E_2$ was not changed. We also demonstrated that FSH did not inhibit the suppressive effect of GnRH on $P_4$ production as the result of apoptosis. The present study suggests that cortisol of high concentration could cause the apoptosis of human granulosa-lutein cells by suppressing the production of $P_4$. However, we need more studies to elucidate the mechanism by which cortisol induces apoptosis in human granulosa-lutein cells in view of the fact that our results are inconsistent with previous reported data.

  • PDF

Sagantang-induced Apoptotic Cell Death is Associated with the Activation of Caspases in AGS Human Gastric Carcinoma Cells (사간탕 처리에 의한 AGS 인체 위암세포의 caspase 활성 의존적 apoptosis 유발)

  • Park, Cheol;Hong, Su Hyun;Choi, Sung Hyun;Lee, Se-Ra;Leem, Sun-Hee;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.12
    • /
    • pp.1384-1392
    • /
    • 2015
  • Sagantang (SGT), a Korean multiherb formula comprising six medicinal herbs, Paeonia lactiflora Pall., Belamcanda chinensis (L.) DC, Gardenia jasminoides Ellis, Poria cocos Wolf, Cimicifuga heracleifolia Komarov, and Artractylodes japonica Koidzumi, was recorded in “Dongeuibogam.” The present study investigated the anticancer potential of SGT in AGS human gastric carcinoma cells. The results indicated that SGT treatment significantly inhibited the growth and viability of AGS cells in a dose-dependent manner, which was associated with the induction of apoptotic cell death, as evidenced by the formation of apoptotic bodies, in addition to chromatin condensation and DNA fragmentation, and the accumulation of annexin-V positive cells. The induction of apoptotic cell death by the SGT treatment was associated with up-regulation of Fas protein expression, truncation of Bid, and down-regulation of the anti-apoptotic Bcl-2 protein. The SGT treatment also effectively induced the loss of mitochondrial membrane potential, which was associated with the activation of caspases (caspase-3, -8, and -9) and degradation of poly (ADP-ribose) polymerase. However, a pan-caspase inhibitor significantly blocked the SGT-induced apoptosis and growth suppression in AGS cells. This study suggests that SGT induces caspase-dependent apoptosis through an extrinsic pathway by upregulating Fas, as well as through an intrinsic pathway by modulating Bcl-2 family members in AGS cells. The results suggest that SGT may be a potential chemotherapeutic agent for the control of human gastric cancer cells. However, further studies will be needed to confirm the potential of SGT in cancer prevention and therapy in an in vivo model and to identify biological active compounds of SGT.

Characterization of Cigarette Smoke Extract (CSE)-induced Cell Death in Lung Epithelial Cells (폐상피세포에서 흡연추출물-유도성 세포사에 관한 연구)

  • Choi, Eun Kyung;Kim, Yun Seup;Park, Jae Seuk;Jee, Young Koo;Lee, Kye Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.1
    • /
    • pp.43-53
    • /
    • 2005
  • Emphysema is characterized by air space enlargement and alveolar destruction. The mechanism responsible for the development of emphysema was thought to be protease/antiprotease imbalance and oxidative stress. A very recent study shows that alveolar cell apoptosis causes lung destruction and emphysematous changes. Thus, this study was performed to support the evidence for the role of apoptosis in the development of emphysema by characterizing cigarette smoke extract (CSE)-induced apoptosis in A549 (type II pneumocyte) lung epithelial cells. CSE induced apoptosis at low concentration (10% or less) and both apoptosis and necrosis at high concentration (20%). Apoptosis was demonstrated by DNA fragmentation using FACScan for subG1 fraction. Discrimination between apoptosis and necrosis was done by morphologic analysis using fluorescent microscopy with Hoecst 33342/propium iodide double staing and electron microscopy. Cytochrome c release was confirmed by using immunofluorescence with monoclonal anti-cytochrome c antibody. However, CSE-induced cell death did not show the activation of caspase 3 and was not blocked by caspase inhibitors. This suggests that CSE-induced apoptosis might be caspase-independent apoptosis. CSE-induced cell death was near completely blocked by N-acetylcystein and bcl-2 overexpression protected CSE-induced cell death. This results suggests that CSE might induce apoptosis through intracellular oxidative stress. CSE also activated p53 and functional knock-out of p53 using stable overexpression of HPV-E6 protein inhibited CSE-induced cell death. The characterization of CSE-induced cell death in lung epithelial cells could support the role of lung cell apoptosis in the pathogenesis of emphysema.

Anti-inflammatory effects of fruit and leaf extracts of Lycium barbarum in lipopolysaccharide-stimulated RAW264.7 cells and animal model (염증유도 RAW264.7 세포와 동물모델에서 구기자와 구기엽의 항염 효능)

  • Bae, Su-Mi;Kim, Ji-Eun;Bae, Eun-Young;Kim, Kyung-Ah;Ly, Sun Yung
    • Journal of Nutrition and Health
    • /
    • v.52 no.2
    • /
    • pp.129-138
    • /
    • 2019
  • Purpose: Medicinal herbs have recently attracted attention as health beneficial foods and source materials for drug development. Recent studies have demonstrated that extracts of Lycium's fruits and roots have a range of physiologically active substances. The extract of Lycium's leaves has been reported to have excellent anti-oxidant and anti-microbial activity, but its anti-inflammatory efficacy is not known. The chlorophyll present in the leaves can act as an anti-oxidant or pro-oxidant depending on the presence of light. Therefore, this study analyzed the anti-inflammatory effects of Lycium's fruit extract (LFE), leaf extract (LLE), and leaf extract with chlorophyll removal (LLE with CR). Methods: This study examined the inhibitory effects of LFE, LLE, and LLE with CR on pro-inflammatory mediator production as well as on the expression of iNOS and COX-2 in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and BALB/c mice. Results: LFE, LLE, and LLE with CR inhibited the production of pro-inflammatory mediators (NO, $TNF-{\alpha}$, IL-6, and $IL-1{\beta}$) and the expression of iNOS and COX-2 in LPS-stimulated RAW 264.7 cells in a dose-dependent manner. Furthermore, the administration of LLE and LLE with CR inhibited the serum pro-inflammatory cytokine levels and suppressed DNA damage in BALB/c mice. In particular, LLE with CR exhibited the highest anti-inflammatory activity. Conclusion: These results suggest that the fruit and leaves of Lycium are potential therapeutic agents against inflammation.

A Natural L-Arginine Analog, L-Canavanine-Induced Apoptosis is Suppressed by Protein Tyrosine Kinase p56lck in Human Acute Leukemia Jurkat T Cells (인체 급성백혈병 Jurkat T 세포에 있어서 L-canavanine에 의해 유도되는 세포자살기전에 미치는 단백질 티로신 키나아제 p56lck의 저해 효과)

  • Park, Hae-Sun;Jun, Do-Youn;Woo, Hyun-Ju;Rue, Seok-Woo;Kim, Sang-Kook;Kim, Kyung-Min;Park, Wan;Moon, Byung-Jo;Kim, Young-Ho
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1529-1537
    • /
    • 2009
  • To elucidate further the antitumor effects of a natural L-arginine analogue, L-canavanine, the mechanism underlying apoptogenic activity of L-canavanine and its modulation by protein tyrosine kinase $p56^{lck}$ was investigated in human Jurkat T cells. When the cells were treated with 1.25 to 2.5 mM L-canavanine for 36 h, several apoptotic events including mitochondrial membrane potential (${\Delta\Psi}m$) loss, activation of caspase-9, -3, -8, and -7, poly (ADP-ribose) polymerase (PARP) degradation, and DNA fragmentation were induced without alteration in the levels of Fas or FasL. These apoptotic changes were more significant in $p56^{lck}$-deficient Jurkat clone JCaM1.6 than in $p56^{lck}$-positive Jurkat clone E6.1. The L-canavanine-induced apoptosis observed in $p56^{lck}$-deficient JCaM1.6 cells was significantly reduced by introducing $p56^{lck}$ gene into JCaM1.6 cells by stable transfection. Treatment of JCaM1.6/lck cells with L-canavanine caused a transient 1.6-fold increase in the kinase activity of $p56^{lck}$. Both FADD-positive wild-type Jurkat T cell clone A3 and FADD-deficient Jurkat T cell clone I2.1 exhibited a similar susceptibility to the cytotoxicity of L-canavanine, excluding involvement of Fas/FasL system in triggering L-canavanine-induced apoptosis. The L-canavanine-induced apoptotic sub-$G_1$ peak and activation of caspase-3, -8, and -7 were abrogated by pan-caspase inhibitor (z-VAD-fmk), whereas L-canavanine-induced activation of caspase-9 was not affected. These results demonstrated that L-canavanine caused apoptosis of Jurkat T cells via the loss of ${\Delta\Psi}m$, and the activation of caspase-9, -3, -8, and -7, leading to PARP degradation, and that the $p56^{lck}$ kinase attenuated the ${\Delta\Psi}m$ loss and activation of caspases, and thus contributed as a negative regulator to L-canavanine-induced apoptosis.

Growth Inhibition of Human Uterine Leiomyoma Cells Using Haeohyul-tang (하어혈탕(下瘀血湯)이 1차배양된 인체자궁근종세포(人體子宮筋腫細胞)에 미치는 영향)

  • Kim, Han-Kyun;Zhao, Rong-Jie;Jo, Mi-Jeong;Choi, Sun-Mi;Park, Sook-Jahr;Kim, Mi-Ryeo;Kwon, Young-Kyu;Kim, Sang-Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.158-164
    • /
    • 2007
  • Uterine leiomyoma is the most common tumor in the female genital tract. Although the tumor is benign, it is a matter of paramount importance since it often causes profuse menstrual bleeding, pressure symptoms and infertility. Nevertheless, the etiology and pathophysiology of this abnormality remain poorly understood. The traditional definitive treatment for uterine leiomyomas is hysterectomy and, even today, symptomatic leiomyomas are the leading cause of hysterectomy in Korea. Clearly, the development of a safe, effective, and nonsurgical method of treatment for leiomyoma would be of great benefit to many women. This study demonstrated growth inhibition of uterine leiomyoma cells using Haeohyultang (HT). When human leiomyoma cells were treated with Haeohyultang, cells showed dose-dependent growth inhibitory effect. Cell growth was inhibited by over 40% as determined by both cell counts and MTS assay. Reduction of cellular viability as a consequence of exposure to Haeohyultang resulted from induction of apoptosis, as assessed by DNA fragmentation, PARP cleavage, caspase 9 and caspase 3 assay. Flow cytometry analysis with uterine leiomyoma cells demonstrated sub G1 cell cycle arrest after treatment with drug Haeohyultang. But, the expression levels of p27 and p21 were not changed in Haeohyultang treated cells compared with control. However, the expression levels of clAP1 were reduced by Haeohyultang compared with control. This reduction of clAP1 data means activation of the caspase family, and then induction of PARP cleavage and apoptosis. These results suggest that Haeohyultang may be potential therapeutic approach in the clinical management of uterine leiomyoma.