Effects of Cortisol on the Steroidogenesis and the Apoptosis of Human Granulosa-Lutein Cells

Cortisol이 사람 과립-황체화 세포의 스테로이드 생성과 세포자연사에 미치는 영향

  • Kim, Jin-Hee (Dept. of Biotechnology, College of Natural Sciences, Seoul Women's University) ;
  • Yang, Hyun-Won (Dept. of Biotechnology, College of Natural Sciences, Seoul Women's University)
  • 김진희 (서울여자대학교 자연과학대학 생명공학과) ;
  • 양현원 (서울여자대학교 자연과학대학 생명공학과)
  • Published : 2009.12.31

Abstract

Cortisol is present in high concentration in the ovary and its receptor is expressed in the ovarian cells. Moreover, cortisol is known to have a role in steroid synthesis and cell metabolism in human granulosa and lutein cells. However, little is known of the role of cortisol presenting in high concentration in the follicles after LH surge on the granulosa-lutein cells. Therefore, the this study we evaluated the apoptosis and the production of progesterone $(P_4)$ and estradiol $(E_2)$ in the granulosa-lutein cells that are obtained during oocyte-retrieval after treatment with 5, 50, and $500{\mu}g/m\ell$ cortisol and 1 IU/$m\ell$ FSH. Results of DNA fragment analysis and TUNEL assay demonstrated that DNA fragmentation and the rate of apoptotic cells were increased in a dose-dependent manner showing a significant increase in 50 and $500{\mu}g/m\ell$ cortisol treated cells. We found, however, that FSH did not suppress the apoptosis of the cells induced by cortisol. In the results of chemiluminescence assay for $P_4$ and $E_2$, $P_4$ production was decreased by cortisol treatment, whereas $E_2$ was not changed. We also demonstrated that FSH did not inhibit the suppressive effect of GnRH on $P_4$ production as the result of apoptosis. The present study suggests that cortisol of high concentration could cause the apoptosis of human granulosa-lutein cells by suppressing the production of $P_4$. However, we need more studies to elucidate the mechanism by which cortisol induces apoptosis in human granulosa-lutein cells in view of the fact that our results are inconsistent with previous reported data.

Cortisol은 난소내 다량으로 존재하며, 난소 세포에 그 수용체가 있는 것으로 보고되고 있다. 또한 사람의 과립 및 황체화 세포에서 cortisol은 스테로이드 생성과 세포 대사에 영향을 미치는 것으로 알려지고 있으나, 배란 후 난포액에 높은 농도로 존재하는 cortisol이 과립-황체화 세포에 어떤 영향을 미치는 지는 정확히 밝혀져 있지 않다. 따라서 본 실험에서 과배란 유도후 획득한 사람 과립-황체화 세포를 배양하면서 5, 50, $500{\mu}g/m\ell$ cortisol과 1 IU/$m\ell$ FSH를 처리하고 세포의 세포자연사와 분비된 progesterone$(P_4)$과 estradiol$(E_2)$량의 변화를 조사하였다. DNA 분절화 분석과 TUNEL 방법으로 세포자연사를 평가한 결과, cortisol는 농도 의존적으로 과립-황체화 세포의 세포자연사를 증가시켰고, 특히 50과 $500{\mu}g/m\ell$ cortisol을 처리한 군에서 유의한 차이를 보이며 세포자연사 비율을 증가시켰다. 또한 cortisol에 의한 세포자연사의 증가는 FSH에 의해 억제되지 못함을 알 수 있었다. 화학발광면역 측정법을 이용하여 배양내 $P_4$$E_2$의 양을 측정한 결과, cortisol을 처리한 후 $E_2$의 양은 변화가 없었던 반면 $P_4$의 양은 감소하였다. 이러한 cortisol의 $P_4$ 합성 억제 효과는 세포자연사 결과와 마찬가지로 FSH에 의해 회복되지 못함을 확인할 수 있었다. 이상의 결과는 일정 농도 이상의 cortisol은 과립-황체화 세포의 세포자연사를 유발시킬 수 있으며, 또한 $P_4$의 합성을 억제시킴으로써 난포 폐쇄를 직접적으로 유발시킬 수 있음 보여준다. 그러나 본 연구 결과들은 기존의 연구 결과와 상반된 결과를 보이고 있으며, 앞으로 과립-황체화 세포에 대한 cortisol의 생리적인 관련성을 밝혀 그 기전을 명확히 할 필요성이 있다.

Keywords

References

  1. Andersen CY (2002) Possible new mechanism of cortisol action in female reproductive organs: physiological implications of the free hormone hypothesis. J Endocrinol 173:211-217. https://doi.org/10.1677/joe.0.1730211
  2. Baldwin DM (1979) The effect of glucocorticoids on estrogendependent luteinizing hormone release in the ovariectomized rat and on gonadotropin secretin in the intact female rat. Endocrinology 105:120-128. https://doi.org/10.1210/endo-105-1-120
  3. Ben-Rafael Z, Benadiva CA, García CJ, Flickinger GL (1988) Cortisol stimulation of estradiol and progesterone secretion by human granulosa cells is independent of follicle-stimulating hormone effects. Fertil Steril 49:813- 816.
  4. Bourgeois S, Newby RF (1977) Diploid and haploid states of the glucocorticoid receptor gene of mouse lymphoid cell lines. Cell 11:423-430. https://doi.org/10.1016/0092-8674(77)90060-5
  5. Breen KM, Billings HJ, Wagenmaker ER, Wessinger EW, Karsch FJ (2005) Endocrine basis for disruptive effects of cortisol on preovulatory events. Endocrinology 146: 2107-2115. https://doi.org/10.1210/en.2004-1457
  6. Channing CP, Tsai V, Sachs D (1976) Role of insulin, thyroxin and cortisol in luteinization of porcine granulosa cells grown in chemically defined media. Biol Reprod 15:235-247. https://doi.org/10.1095/biolreprod15.2.235
  7. Dobson H, Alam MG, Kanchev LN (1987) Effect of betametasone treatment on luteal lifespan and the LH response to GnRH in dairy cows. J Reprod Fertil 80: 25-30. https://doi.org/10.1530/jrf.0.0800025
  8. Fateh M, Ben-Rafael Z, Benadiva CA, Mastroianni L Jr, Flickinger GL (1989) Cortisol levels in human follicular fluid. Fertil Steril 51:538-541.
  9. Feng Z, Marti A, Jehn B, Altermatt HJ, Chicaiza G, Jaggi R (1995) Glucocorticoid and progesterone inhibit involution and programmed cell death in the mouse mammary gland. J Cell Biol 131:1095-1103. https://doi.org/10.1083/jcb.131.4.1095
  10. Giddings SJ, Young DA (1974) An in vitro effect of physiological levels of cortisol and related steroids on the structural integrity of the nucleus in rat thymic lymphocytes as measured by resistance to lysis. J Steroid Biochem 5:587-595. https://doi.org/10.1016/0022-4731(74)90110-1
  11. Hallahan C, Young DA, Munck A (1973) Time course of early events in the action of glucocorticoids on rat thymus cells in vitro. Synthesis and turnover of a hypothetical cortisol-induced protein inhibition of glucose metabolism and of a presumed ribonucleic acid. J Biol Chem 248:2922-2927.
  12. Hillier SG, Tetsuka M (1998) An anti-inflammatory role for glucocorticoids in the ovaries- J Reprod Immunol 39:21-27. https://doi.org/10.1016/S0165-0378(98)00011-4
  13. Hsueh AJ, Erickson GF (1978) Glucocorticoid inhibition of FSH-induced estrogen production in cultured rat granulosa cells. Steroids 32:639-648. https://doi.org/10.1016/0039-128X(78)90074-0
  14. Huang TJ, Shirley Li P (2001) Dexamethasone inhibits luteinizing hormone-induced synthesis of steroidogenic acute regulatory protein in cultured rat preovulatory follicles. Biol Reprod 64:163-170. https://doi.org/10.1095/biolreprod64.1.163
  15. Jarrett RJ (1965) Effects and mode of action of adrenocorticotrophic hormone upon the reproductive tract of the female mouse. Endocrinology 76:434-440. https://doi.org/10.1210/endo-76-3-434
  16. Kaiser N, Edelman IS (1977) Calcium dependence of glucocorticoid-induced lymphocytolysis. Proc Natl Acad Sci USA 74:638-642. https://doi.org/10.1073/pnas.74.2.638
  17. Kanchev LN, Dobson H, Ward WR, Fitzpatrick RJ (1976) Concentration of steroids in bovine peripheral plasma during the oestrous cycle and the effect of betamethasone treatment. J Reprod Fertil 48:341-345. https://doi.org/10.1530/jrf.0.0480341
  18. Komiyama J, Nishimura R, Lee HY, Sakumoto R, Tetsuka M, Acosta TJ, Skarzynski DJ, Okuda K (2008) Cortisol is a suppressor of apoptosis in bovine corpus luteum. Biol Reprod 78:888-895. https://doi.org/10.1095/biolreprod.107.065656
  19. Macfarlane MS, Breen KM, Sakurai H, Adams BM, Adams TE (2000) Effect of duration of in fusion of stress-like concentrations of cortisol on follicular development and the preovulatory surge of LH in sheep. Anim Reprod Sci 63:167-175. https://doi.org/10.1016/S0378-4320(00)00179-2
  20. McKay LI, Cidlowski JA (1999) Molecular control of immune/inflammatory responses: interactions between nuclear factor-${\kappa}$B and steroid receptor-signaling pathways. Endocr Rev 20:435-459. https://doi.org/10.1210/er.20.4.435
  21. Michael AE, Cooke BA (1994) A working hypothesis for the regulation of steroidogenesis and germ cell development in the gonads by glucocorticoids and 11${\beta}$-hydroxysteroid dehydrogenase (11${\beta}$HSD). Mol Cell Endocrinol 100: 55-63. https://doi.org/10.1016/0303-7207(94)90279-8
  22. Michael AE, Thurston LM, Rae MT (2003) Glucocorticoid metabolism and reproduction: a tale of two enzymes. Reproduction 126:425-441. https://doi.org/10.1530/rep.0.1260425
  23. Munck A (1968) Metabolic site and time course of cortisol action on glucose uptake, lactic acid output, and glucose 6-phosphate levels of rat thymus cells in vitro. J Biol Chem 243:1039-1042.
  24. Nordeen SK, Young DA (1976) Glucocorticoid action on rat thymic lymphocytes. Experiments utilizing adenosine to support cellular metabolism lead to a reassessment of catabolic hormone actions. J Biol Chem 251:7295- 7303.
  25. Norwitz ER, Schust DJ, Fisher SJ (2001) Implantation and the survival of early pregnancy. N Engl J Med 345: 1400-1408. https://doi.org/10.1056/NEJMra000763
  26. Okuda K, Korzekwa A, Shibaya M, Murakami S, Nishimura R, Tsubouchi M, Woclawek-Potocka I, Skarzynski DJ (2004) Progesterone is a suppressor of apoptosis in bovine luteal cells. Biol Reprod 71:2065-2071. https://doi.org/10.1095/biolreprod.104.028076
  27. Omura T, Morohashi K (1995) Gene regulation of steroidogenesis. J Steroid Biochem Mol Biol 53:19-25. https://doi.org/10.1016/0960-0760(95)00036-Y
  28. Pisetsky DS, Fairhurst AM (2007) The origin of extracellular DNA during the clearance of dead and dying cells. Autoimmunity 40:281-284. https://doi.org/10.1080/08916930701358826
  29. Sasson R, Amsterdam A (2003) Pleiotropic anti-apoptotic activity of glucocorticoids in ovarian follicular cells. Biochem Pharmacol 66:1393-1401. https://doi.org/10.1016/S0006-2952(03)00489-1
  30. Schoonmaker JN, Erickson GF (1983) Glucocorticoid modulation of follicle-stimulating hormone-mediated granulosa cell differentiation. Endocrinology 113(4):1356-1363. https://doi.org/10.1210/endo-113-4-1356
  31. Schreiber JR, Nakamura K, Erickson GF (1982) Rat ovary glucocorticoid receptor: identification and characterization. Steroids 39:569-584. https://doi.org/10.1016/0039-128X(82)90057-5
  32. Shimojo M, Ricketts ML, Petrelli MD, Moradi P, Johnson GD, Bradwell AR, Hewison M, Howie AJ, Stewart PM (1997) Immunodetection of 11b-hydroxysteroid dehydrogenase type 2 in human mineralocorticoid target tissues: evidence for nuclear localization. Endocrinology 138:1305-1311. https://doi.org/10.1210/en.138.3.1305
  33. Streeten DH, Anderson GH Jr, Dalakos TG, Seeley D, Mallov JS, Eusebio R, Sunderlin FS, Badawy SZ, King RB (1984) Normal and abnormal function of the hypothalamic-pituitary- adrenocortical system in man. Endocr Rev 5:371-394. https://doi.org/10.1210/edrv-5-3-371
  34. Tetsuka M, Thomas FJ, Thomas MJ, Anderson RA, Mason JI, Hillier SG (1997) Differential expression of messenger ribonucleic acids encoding 11b-hydroxysteroid dehydrogenase types 1 and 2 in human granulosa cells. J Clin Endocrinol Metab 82:2006-2009.
  35. Wang M (2005) The role of glucocorticoid action in the pathophysiology of the metabolic syndrome. Nutr Metab 2(1):3. https://doi.org/10.1186/1743-7075-2-3
  36. Whorwood CB, Franklyn JA, Sheppard MC, Stewart PM (1992) Tissue loclization of 11${\beta}$-hydroxysteroid dehydrogenase and its relationship to the glucocorticoid receptor. J Steroid Biochem Mol Biol 41:21-28. https://doi.org/10.1016/0960-0760(92)90220-D