• 제목/요약/키워드: DNA Binding Peptide

검색결과 79건 처리시간 0.023초

MALDI-TOF Analysis of Binding between DNA and Peptides Containing Lysine and Tryptophan

  • Lee, Seonghyun;Choe, Sojeong;Oh, Yeeun;Jo, Kyubong
    • Mass Spectrometry Letters
    • /
    • 제6권3호
    • /
    • pp.80-84
    • /
    • 2015
  • Here, we demonstrate the use of MALDI-TOF as a fast and simple analytical approach to evaluate the DNA-binding capability of various peptides. Specifically, by varying the amino acid sequence of the peptides consisting of lysine (K) and tryptophan (W), we identified peptides with strong DNA-binding capabilities using MALDI-TOF. Mass spectrometric analysis reveals an interesting novel finding that lysine residues show sequence selective preference, which used to be considered as mediator of electrostatic interactions with DNA phosphate backbones. Moreover, tryptophan residues show higher affinity to DNA than lysine residues. Since there are numerous possible combinations to make peptide oligomers, it is valuable to introduce a simple and reliable analytical approach in order to quickly identify DNA-binding peptides.

Ku80의 DNA-PKcs 결합부위 합성 Peptide 투여에 의한 유방암세포의 DNA-dependent protein kinase 억제 효과 (Effect on the Inhibition of DNA-PK in Breast Cancer Cell lines(MDA-465 and MDA-468) with DNA-PKcs Binding Domain Synthetic Peptide of Ku80)

  • 김충희;김태숙;문양수;정장용;강정부;김종수;강명곤;박희성
    • 한국임상수의학회지
    • /
    • 제21권3호
    • /
    • pp.253-258
    • /
    • 2004
  • DNA double-strand break (DSB) is a serious treat for the cells including mutations, chromosome rearrangements, and even cell death if not repaired or misrepaired. Ku heterodimer regulatory DNA binding subunits (Ku70/Ku80) bound to double strand DNA breaks are able to interact with 470-kDa DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and the interaction is essential for DNA-dependent protein kinase (DNA-PK) activity. The Ku80 mutants were designed to bind Ku70 but not DNA end binding activity and the peptides were treated in breast cancer cells for co-therapy strategy to see whether the targeted inhibition of DNA-dependent protein kinase (DNA-PK) activity sensitized breast cancer cells to ionizing irradiation or chemotherapy drug to develop a treatment of breast tumors by targeting proteins involved in damage-signaling pathway and/or DNA repair. We designed domains of Ku80 mutants, 26 residues of amino acids (HN-26) as a control peptide or 38 (HNI-38) residues of amino acids which contain domains of the membrane-translocation hydrophobic signal sequence and the nuclear localization sequence, but HNI-38 has additional twelve residues of peptide inhibitor region. We observed that the synthesized peptide (HNI-38) prevented DNA-PKcs from binding to Ku70/Ku80, resulting in inactivation of DNA-PK complex activity in breast cancer cells (MDA-465 and MDA-468). Consequently, the peptide treated cells exhibited poor to no DNA repair, and became highly sensitive to irradiation or chemotherapy drugs. The growth of breast cancer cells was also inhibited. These results demonstrate the possibility of synthetic peptide to apply breast cancer therapy to induce apoptosis of cancer cells.

Identification of a Deoxyribonuclease I Inhibitor from a Phage-Peptide Library

  • Choi, Suk-Jung;Sperinde, Jeffrey J.;Szoka, Francis C. Jr.
    • Molecules and Cells
    • /
    • 제19권1호
    • /
    • pp.54-59
    • /
    • 2005
  • Deoxyribonuclease I (DNase I) is a divalent cation dependent endonuclease and thought to be a significant barrier to effective gene delivery. The only known DNase I-specific inhibitor is monomeric actin which acts by forming a 1:1 complex with DNase I. Its use, however, is restricted because of tendency to polymerize under certain conditions. We screened two random phage peptide libraries of complexity $10^8$ and $10^9$ for DNase I binders as candidates for DNase I inhibitors. A number of DNase I-binding peptide sequences were identified. When these peptides were expressed as fusion proteins with Escherichia coli maltose binding protein, they inhibited the actin-DNase I interaction ($IC_{50}=0.1-0.7{\mu}M$) and DNA degradation by DNase I ($IC_{50}=0.8-8{\mu}M$). Plasmid protection activity in the presence of DNase I was also observed with the fusion proteins. These peptides have the potential to be a useful adjuvant for gene therapy using naked DNA.

DNA와 상호작용에서 T4 endonuclease V의 C-말단 부위의 역할에 관한 분광학적 연구: 핵자기공명과 형광 실험 (The Spectroscopic Study on the Role of C-terminal Region of T4 endonuclease V in the Interaction with DNA: NMR and Fluorescence Experiment)

  • 유준석;임형미;임후강;신정휴;이봉진
    • 약학회지
    • /
    • 제40권2호
    • /
    • pp.193-201
    • /
    • 1996
  • In order to study the role of C-terminal aromatic region of T4 endonuclease V in the interaction with substrate DNA, NMR and Fluorescence spectrum were recorded. Analysis of flu orescence emission spectra showed that C-terminal region of T4 endonuclease V is in or very near the binding site. In the HSQC spectrum of $^{15}N$-Tyr-labeled T4 endonuclease V*DNA complex, the broadening of a peak was observed. It is presumed that this peak corresponds to one among three tyrosine residues which belong to the WYKYY segment of C-terminal region of T4 endonuclease V. Interactions of peptide fragments consisting of C-terminal residues of T4 endonuclease V with DNAs(TT-, T^T-DNA) were investigated by NMR and Fluorescence experiment. The results suggest that two peptide fragments themselves bind to DNAs and their binding pattern is not an intercalation mode.

  • PDF

The novel peptide F29 facilitates the DNA-binding ability of hypoxia-inducible factor-1α

  • Choi, Su-Mi;Park, Hyun-Sung
    • BMB Reports
    • /
    • 제42권11호
    • /
    • pp.737-742
    • /
    • 2009
  • Hypoxia-inducible factor-$1{\alpha}/{\beta}$ (HIF-$1{\alpha}/{\beta}$) is a heterodimeric transcriptional activator that mediates gene expression in response to hypoxia. HIF-$1{\alpha}$ has been noted as an effective therapeutic target for ischemic diseases such as myocardiac infarction, stroke and cancer. By using a yeast two-hybrid system and a random peptide library, we found a 16-mer peptide named F29 that directly interacts with the bHLH-PAS domain of HIF-$1{\alpha}$. We found that F29 facilitates the interaction of the HIF-$1{\alpha/\beta}$ heterodimer with its target DNA sequence, hypoxia-responsive element (HRE). The transient transfection of an F29-expressing plasmid increases the expression of both an HRE-driven luciferase gene and the endogenous HIF-1 target gene, vascular endothelial growth factor (VEGF). Taken together, we conclude that F29 increases the DNA-binding ability of HIF-$1{\alpha}$, leading to increased expression of its target gene VEGF. Our results suggest that F29 can be a lead compound that directly targets HIF-$1{\alpha}$ and increases its activity.

Inhibition of DNA-dependent Protein Kinase by Blocking Interaction between Ku Complex and Catalytic Subunit of DNA-dependent Protein Kinase

  • Kim, Chung-Hui;Cuong, Dang-Van;Kim, Jong-Su;Kim, Na-Ri;Kim, Eui-Yong;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권1호
    • /
    • pp.9-14
    • /
    • 2003
  • Recent studies indicated that cancer cells become resistant to ionizing radiation (IR) and chemotherapy drugs by enhanced DNA repair of the lesions. Therefore, it is expected to increase the killing of cancer cells and reduce drug resistance by inhibiting DNA repair pathways that tumor cells rely on to escape chemotherapy. There are a number of key human DNA repair pathways which depend on multimeric polypeptide activities. For example, Ku heterodimer regulatory DNA binding subunits (Ku70/Ku80) on binding to double strand DNA breaks (DSBs) are able to interact with 470-kDa DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and are essential for DNA-dependent protein kinase (DNA-PK) activity. It has been known that DNA-PK is an important factor for DNA repair and also is a sensor-transmitting damage signal to downstream targets, leading to cell cycles arrest. Our ultimate goal is to develop a treatment of breast tumors by targeting proteins involved in damage-signaling pathway and/or DNA repair. This would greatly facilitate tumor cell cytotoxic activity and programmed cell death through DNA damaging drug treatment. Therefore, we designed a domain of Ku80 mutants that binds to Ku70 but not DNA end binding activity and used the peptide in co-therapy strategy to see whether the targeted inhibition of DNA-PK activity sensitized breast cancer cells to irradiation or chemotherapy drug. We observed that the synthesized peptide (HNI-38) prevented DNA-PKcs from binding to Ku70/Ku80, thus resulting in inactivation of DNA-PK activity. Consequently, the peptide treated cells exhibited poor to no DNA repair, and became highly sensitive to IR or chemotherapy drugs, and the growth of breast cancer cells was inhibited. Additionally, the results obtained in the present study also support the physiological role of resistance of cancer cells to IR or chemotherapy.

Validation of Heterodimeric TAT-NLS Peptide as a Gene Delivery Enhancer

  • Doh, Kyung-Oh
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권6호
    • /
    • pp.788-794
    • /
    • 2015
  • Cationic liposomes have been actively used as gene delivery vehicles despite their unsatisfactory efficiencies because of their relatively low toxicity. In this study, we designed novel heterodimeric peptides as nonviral gene delivery systems from TAT and NLS peptides using cysteine-to-cysteine disulfide bonds between the two. Mixing these heterodimeric peptides with DNA before mixing with lipofectamine resulted in higher transfection efficiencies in MCF-7 breast cancer cells than mixing unmodified TAT, NLS, and a simple mixture of TAT and NLS with DNA, but did not show an adverse effect on cell viability. In gel retardation assays, the DNA binding affinities of heterodimeric peptides were stronger than NLS but weaker than TAT. However, this enhancement was only observed when heterodimeric peptides were premixed with DNA before being mixed with lipofectamine. The described novel transfection-enhancing peptide system produced by the heterodimerization of TAT and NLS peptides followed by simple mixing with DNA, increased the gene transfer efficiency of cationic lipids without enhancing cytotoxicity.

구리 결합 펩타이드의 발현에 의한 대장균 균체의 구리 함량 증가 (Copper Content Increase in E. coli Expressing Copper-Binding Peptide Genes)

  • 김형기;문성현;김우연
    • Applied Biological Chemistry
    • /
    • 제46권1호
    • /
    • pp.7-11
    • /
    • 2003
  • 감자 polyphenol oxidase의 구리결합지역 DNA와 histidine 다량 함유 인공 펩타이드를 암호화하는 DNA를 대장균 벡터에 각각 클로닝하여 발현시킨 후 대장균 내의 구리함량 증감을 조사하였다. Polyphenol oxidase의 구리결합지역 DNA를 포함하는 PPOCBpET32 벡터를 함유하는 균주의 경우는 벡터를 함유하지 않는 대장균 대조구보다 오히려 구리 함량이 약간 감소하여 약 600ppm의 간을 보여주어, 감자 polyphenol oxidase 구리결합지역의 대장균 내에서의 발현이 구리 함량 증가에 기여하지 못함을 알 수 있었다. 반면에 한 개의 hexahistidine 단위 DNA를 포함하는 pET28a 벡터 함유 대장균 균주를 knamycin 미첨가 배지에서 배양한 경우에는 구리 함량이 약 2,500ppm으로 높게 나타났다. 한편 hexahistidine 9개로 구성된 polyhistidine을 암호화하는 DNA를 포함하는 pET-his 벡터 함유 균주를 kanamycin 미첨가 배지에서 배양한 경우에 구리함량이 약 3,200ppm으로 나타나, 하나의 hexahistidine 단위만 발현하는 균주와 비교하여 구리함량이 약 30% 증가됨을 알 수 있었다.

Screening Peptides Binding Specifically to Colorectal Cancer Cells from a Phage Random Peptide Library

  • Wang, Jun-Jiang;Liu, Ying;Zheng, Yang;Liao, Kang-Xiong;Lin, Feng;Wu, Cheng-Tang;Cai, Guan-Fu;Yao, Xue-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권1호
    • /
    • pp.377-381
    • /
    • 2012
  • The aim of this study was to screen for polypeptides binding specifically to LoVo human colorectal cancer cells using a phage-displayed peptide library as a targeting vector for colorectal cancer therapy. Human normal colorectal mucous epithelial cells were applied as absorber cells for subtraction biopanning with a c7c phage display peptide library. Positive phage clones were identified by enzyme-linked immunosorbent assay and immunofluorescence detection; amino acid sequences were deduced by DNA sequencing. After 3 rounds of screening, 5 of 20 phage clones screened positive, showing specific binding to LoVo cells and a conserved RPM motif. Specific peptides against colorectal cancer cells could be obtained from a phage display peptide library and may be used as potential vectors for targeting therapy for colorectal cancer.

인삼으로부터 Acyl-CoA-binding Protein 유전자의 동정 및 계통적 분석 (Isolation and Phylogenetic Analysis of Acyl-CoA-binding Protein Gene from Panax ginseng C.A. Meyer)

  • 인준교;류명현;최광태;최관삼;김세영;양덕춘
    • 식물조직배양학회지
    • /
    • 제28권4호
    • /
    • pp.201-204
    • /
    • 2001
  • Acyl-binding protein (ACBP)은 긴사슬 acyl-CoA와 결합하는 고도로 보존되어 있는 세포질 단백질이다. 인삼의 유용 유전자를 대량으로 분석하기 위하여 제작된 인삼 모상근cDNA library로부터 인삼 ACBP유전자가 분리되었다. 이 유전자는 길이가 453 bp이고 264 bp의 open reading frame (10kDa)을 가지고 있었다. 인삼 ACBP의 아미노산 서열을 다른 식물체에서 보고된 것과 비교한 결과 castor bean과 89.5%로 매우 높은 유사성을 나타내었으며, lilly, Digitalis. Arabidopsis, rape 등과 각각 81.8%, 80.7%, 73%, 71.9%의 유사성을 나타내었다. 그러나 인삼의 ACBP는 Arabidopsis 와 rape의 ACBP보다 5개의 아미노산이 적은 87개의 아미노산으로 이루어져 있었고 어떠한 signal peptide로 발견되지 않았다. 그리고 현재 보고되어 있는 다른 식물체의 ACBP와 계통분석을 한 결과 인삼의 ACBP는 Arabidopsis나 cotton 보다는 castor bean과 매우 가까운 유연관계에 있는 것으로 나타났다.

  • PDF