DOI QR코드

DOI QR Code

The novel peptide F29 facilitates the DNA-binding ability of hypoxia-inducible factor-1α

  • Choi, Su-Mi (Department of Life Science, University of Seoul) ;
  • Park, Hyun-Sung (Department of Life Science, University of Seoul)
  • Published : 2009.11.30

Abstract

Hypoxia-inducible factor-$1{\alpha}/{\beta}$ (HIF-$1{\alpha}/{\beta}$) is a heterodimeric transcriptional activator that mediates gene expression in response to hypoxia. HIF-$1{\alpha}$ has been noted as an effective therapeutic target for ischemic diseases such as myocardiac infarction, stroke and cancer. By using a yeast two-hybrid system and a random peptide library, we found a 16-mer peptide named F29 that directly interacts with the bHLH-PAS domain of HIF-$1{\alpha}$. We found that F29 facilitates the interaction of the HIF-$1{\alpha/\beta}$ heterodimer with its target DNA sequence, hypoxia-responsive element (HRE). The transient transfection of an F29-expressing plasmid increases the expression of both an HRE-driven luciferase gene and the endogenous HIF-1 target gene, vascular endothelial growth factor (VEGF). Taken together, we conclude that F29 increases the DNA-binding ability of HIF-$1{\alpha}$, leading to increased expression of its target gene VEGF. Our results suggest that F29 can be a lead compound that directly targets HIF-$1{\alpha}$ and increases its activity.

Keywords

References

  1. Masson, N. and Ratcliffe, P. J. (2003) HIF prolyl and asparaginyl hydroxylases in the biological response to intracellular O2 levels. J. Cell Sci. 116, 3041-3049 https://doi.org/10.1242/jcs.00655
  2. Semenza, G. L. (2001) Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol. Med. 7, 345-350 https://doi.org/10.1016/S1471-4914(01)02090-1
  3. Wang, G. L., Jiang, B. H., Rue, E. A. and Semenza, G. L. (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix- PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. U.S.A. 92, 5510-5514 https://doi.org/10.1073/pnas.92.12.5510
  4. Bruick, R. K. and McKnight, S. L. (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337-1340 https://doi.org/10.1126/science.1066373
  5. Natarajan, R., Salloum, F. N., Fisher, B. J., Kukreja, R. C. and Fowler, A. A. 3rd. (2006) Hypoxia inducible factor-1 activation by prolyl 4-hydroxylase-2 gene silencing attenuates myocardial ischemia reperfusion injury. Circ. Res. 98, 133-140 https://doi.org/10.1161/01.RES.0000197816.63513.27
  6. Choi, S. M., Choi, K. O., Park, Y. K., Cho, H., Yang, E. G. and Park, H. (2006) Clioquinol, a Cu (II)/Zn (II) chelator, inhibits both ubiquitination and asparagine hydroxylation of hypoxia-inducible factor-1alpha, leading to expression of vascular endothelial growth factor and erythropoietin in normoxic cells. J. Biol. Chem. 281, 34056-34063 https://doi.org/10.1074/jbc.M603913200
  7. Cho, H., Lee, H. Y., Ahn, D. R., Kim, S. Y., Kim, S., Lee, K. B., Lee, Y. M., Park, H. and Yang, E. G. (2008) Baicalein induces functional hypoxia-inducible factor-1alpha and angiogenesis. Mol. Pharmacol. 74, 70-81 https://doi.org/10.1124/mol.107.040162
  8. Park, Y. K., Ahn, D. R., Oh, M., Lee, T., Yang, E. G., Son, M. and Park, H. (2008) Nitric oxide donor, (+/−)-S-nitroso- N-acetylpenicillamine, stabilizes transactive hypoxiainducible factor-1alpha by inhibiting von Hippel-Lindau recruitment and asparagine hydroxylation. Mol. Pharmacol. 74, 236-245 https://doi.org/10.1124/mol.108.045278
  9. Byrd, A. and St-Arnaud, R. (2001) Strategies for rescuing plasmid DNA from yeast two-hybrid colonies. Methods Mol. Biol. 177, 107-119
  10. Choi, S. M., Oh, H. and Park, H. (2008) Microarray analyses of hypoxia-regulated genes in an aryl hydrocarbon receptor nuclear translocator (Arnt)-dependent manner. FEBS J. 275, 5618-5634 https://doi.org/10.1111/j.1742-4658.2008.06686.x
  11. Lindsay, M. A. (2002) Peptide-mediated cell delivery: application in protein target validation. Curr. Opin. In Pharmacol. 2, 587-594 https://doi.org/10.1016/S1471-4892(02)00199-6
  12. Jeong, M. S., Kim, D. W., Lee, M. J., Lee, Y. P., Kim, S. Y., Lee, S. H., Jang, S. H., Lee, K. S., Park, J., Kang, T. C., Cho, S. W., Kwon, O. S., Eum, W. S. and Choi, S. Y. (2008) HIV-1 Tat-mediated protein transduction of human brain creatine kinase into PC12 cells. BMB Reports 41, 537-541
  13. Semenza, G. L. (2003) Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721-732 https://doi.org/10.1038/nrc1187
  14. Yim, S., Choi, S. M., Choi, Y., Lee, N., Chung, J. and Park, H. (2003) Insulin and hypoxia share common target genes but not the hypoxia-inducible factor-1alpha. J. Biol. Chem. 278, 38260-38268 https://doi.org/10.1074/jbc.M306016200
  15. Omura, Y., Nishio, Y., Takemoto, T., Ikeuchi, C., Sekine, O., Morino, K., Maeno, Y., Obata, T., Ugi, S., Maegawa, H., Kimura, H. and Kashiwagi, A. (2009) SAFB1, an RBMX-binding protein, is a newly identified regulator of hepatic SREBP-1c gene. BMB Reports 42, 232-237
  16. Choi, K. O., Lee, T., Lee, N., Kim, J., Yang, E., Yoon, J., Kim, J., Lee, T. and Park, H. (2005) Inhibition of the catalytic activity of hypoxia-inducible factor-1alpha-prolyl- hydroxylase 2 by a MYND-type zinc finger. Mol. Pharmacol. 68, 1803-1809

Cited by

  1. HIF-1 and HIF-2 transcription factors — Similar but not identical vol.29, pp.5, 2010, https://doi.org/10.1007/s10059-010-0067-2