• Title/Summary/Keyword: DFT B3LYP/6-31G(d,p)

Search Result 29, Processing Time 0.023 seconds

mPW1PW91 Calculated Relative Stabilities and Structures for the Conformers of 1,3-dimethoxy-p-tert-butylthiacalix[4]crown-5-ether (1,3-디메톡시-티아캘릭스[4]크라운-5-에테르의 이형체들의 상대적인 안정성과 구조들에 대한 mPW1PW91 계산 연구)

  • Kim, Kwang-ho;Choe, Jong-In
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.5
    • /
    • pp.521-529
    • /
    • 2009
  • Molecular structures of the various conformers for the 1,3-dimethoxy-p-tert-butylthiacalix[4] crown-5-ether (3) were optimized by using DFT B3LYP/6 - 31 + G(d,p) and mPW1PW91/6 - 31 + G(d,p) (hybrid HF-DF) calculation methods. We have analyzed the energy differences and structures of eight in/out orientations (cone_oo, cone_oi, pc_oo, pc_io, pc_oi, pc_ii, 13a_oo, 13a_io) of two methoxy groups in three major conformations (cone, partial-cone and 1,3-alternate). The 13a_oo (out-out orientation of the 1,3-alternate conformer) is calculated to be the most stable among eight different conformations of 3, and in accord with the experimental result. The ordering of relative stability resulted from the mPW1PW91/6 - 31 + G(d,p) calculation method is following: 13a_oo > 13a_io$\sim$pc_io$\sim$cone_oo > cone_oi$\sim$pc_oo$\sim$pc_oi > pc_ii.

Theoretical Study for Thermally Activated Delayed Fluorescence (TADF) Property in Organic Light-Emitting Diode (OLED) Candidates (유기발광소재(OLED) 후보물질의 지연형광(TADF) 성질에 대한 이론적 연구)

  • Seo, Hyun-il;Jeong, Hyeon Jin;Yoon, Byung Jin;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.3
    • /
    • pp.151-159
    • /
    • 2019
  • The TADF properties for carbazol-dicyanobenzene, carbazol-diphenyl sulfone, carbazol-benzonitrile derivatives as OLED candidate materials are theoretically investigated using density functional theory (DFT) with $6-31G^{**}$, cc-pVDZ, and cc-pVTZ basis sets. The optimized geometries, harmonic vibrational frequencies, and HOMO-LUMO energy separations are predicted at the B3LYP/$6-31G^{**}$ level of theory. The harmonic vibrational frequencies of the molecules considered in this study show all real numbers implying true minima. The time dependent density functional theory (TD-DFT) calculations have been also applied to investigate the absorption and emission wavelength (${\lambda}_{max}$), energy differences (${\Delta}E_{ST}$) between excited singlet ($S_1$) and triplet ($T_1$) states of candidate materials.

Molecular Modeling Study on Morphine Derivatives Using Density Functional Methods and Molecular Descriptors (범밀도 함수법과 Molecular Descriptor를 이용한 모르핀 유도체에 대한 분자 모델링 연구)

  • Cotua, Jose;Cotes, Sandra;Castro, Pedro;Castro, Fernando;Mora, Liadys
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.4
    • /
    • pp.363-373
    • /
    • 2010
  • Computational studies were carried out on the opiates morphine, heroin, codeine, pentazocine, and buprenorphine, under the density functional theory. The geometric parameters of the pharmacophore and substituents were evaluated at the B3LYP/6-31+G(d) level of theory. The electronic structure calculations were performed using the same hybrid functional at the B3LYP/6-311++G (d,p) level of theory. The atomic charges were obtained by Mulliken population analysis. Given the reported biological activity, calculated partition coefficients, and electronic and geometric analysis, pentazocine and buprenorphine were chosen as models for proposed analogues. These analogues were then studied and compared with the model molecules. The study reveals that the geometry and electronic structure of the pharmacophore remains consistent in the presence of different substituents. Because the proposed analogues preserve the studied properties of the model molecules, it is likely that these analogues display biological activity.

DFT Calculated Structures and IR Spectra of the Conformers of para-Bromocalix[4]aryl Derivatives

  • Ahn, Sangdoo;Lee, Dong-Kuk;Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3514-3520
    • /
    • 2014
  • Molecular structures of the various conformers of para-bromocalix[4]aryl derivatives 1-4 were optimized using the DFT B3LYP calculation method. The total electronic and Gibbs free energies and normal vibrational frequencies of the different structures (CONE, partial cone (PACO), 1,2-Alternate(1,2-A) and 1,3-Alternate(1,3-A)) were calculated from the four kinds of para-bromocalix[4]aryl derivatives. The B3LYP/6-31G(d,p) calculations suggested the following: 1(PACO) is the most stable among four conformers of 1; 2(CONE) is the most stable among five conformers of 2; 3(PACO) is the most stable among four conformers of 3; 4(1,3-A) is the most stable among four conformers of 4. All the most stable structures optimized by the B3LYP calculation method were in accordance with the experimental crystal structures of 1-4. The calculated IR spectra of the various conformers (CONE, PACO, 1,2-A and 1,3-A) of 1-4 were compared.

Experimental and ab initio Computational Studies on Dimethyl-(4-{4-{3-methyl-3-phenyl-cyclobutyl)-thiazol-2-yl]-hydrazonomethyl}-phenyl)-amine

  • Yuksektepe, Cigdem;Saracoglu, Hanife;Caliskan, Nezihe;Yilmaz, Ibrahim;Cukurovali, Alaaddin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3553-3560
    • /
    • 2010
  • A new hydrazone derivative compound has been synthesized and characterized by IR, $^1H$-NMR, $^{13}C$-NMR and UV-vis. spectroscopy techniques, elemental analysis and single-crystal X-ray diffraction (XRD). The new compound crystallizes in monoclinic space group C2/c. In addition to the crystal structure from X-ray experiment, the molecular geometry, vibrational frequencies and frontier molecular orbitals analysis of the title compound in the ground state have been calculated by using the HF/6-31G(d, p), B3LYP/6-311G(d, p) and B3LYP/6-31G(d, p) methods. The computed vibrational frequencies are used to determine the types of molecular motions associated with each of the observed experimental bands. To determine conformational flexibility, molecular energy profile of (1) was obtained by semi-empirical (AM1) calculation with respect to a selected degree of torsional freedom, which was varied from $-180^{\circ}$ to $+180^{\circ}$ in steps of $10^{\circ}$. Molecular electrostatic potential of the compound was also performed by the theoretical method.

Conformations and Vibrational Frequencies of a Precursor of Benzovesamicol Analogues Studied by Density Functional Theories

  • Park, Jong-Kil;Choe, Sang Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2311-2316
    • /
    • 2014
  • Conformations and vibrational frequencies of the racemic (2RS,3RS)-5-amino-3-(4-phenylpiperazin-1-yl)-1,2,3,4-tetrahydronaphthalen-2-ol-(I) [(2RS,3RS)-(I)], a precursor of benzovesamicol analogues, have been carried out using various DFT methods (M06-2X, B3LYP, B3PW91, PBEPBE, LSDA, and B3P86) with basis sets of 6-31G(d), 6-31+G(d,p), 6-311+G(d,p), 6-311++G(d,p), cc-pVTZ, and TZVP. The LSDA/6-31G(d) level of theory shows the best performance in reproducing the X-ray powder structure. However, the PBEPBE/cc-pVTZ level of theory is the best method to predict the vibrational frequencies of (2RS,3RS)-(I). The potential energy surfaces of racemic pairs (2RS,3RS)-(I) and -(II) are obtained at the LSDA/6-31G(d) level of theory in the gas phase and in water. The results indicate that (2RS,3RS)-(I) are more stable by ~0.75 kcal/mol in energy than (2RS,3RS)-(II) in water, whereas conformer AIIg and BIIg are more stable by ~0.04 kcal/mol than AIg in gas phase. In particular, the hydrogen bond distances between the N of piperazine and the OH of tetrahydronaphthalen become longer in gas, compared with those in the water phase. Vibrational frequencies calculated at the PBEPBE/cc-pVTZ level of theory in the gas phase are larger than those in water, whereas their intensities in the gas phase are weaker than those in water.

Comparison of Different Theory Models and Basis Sets in Calculations of TPOP24N-Oxide Geometry and Geometries of meso-Tetraphenyl Chlorin N-Oxide Regioisomers

  • Choe, Sang-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2861-2866
    • /
    • 2012
  • Results of the comparisons of various density functional theory (DFT) methods with different basis sets for predicting the molecular geometry of TPOP24N-Oxide macrocycle, an oxoporphyrin N-oxide, are reported in this paper. DFT methods, including M06-2X, B3LYP, LSDA, B3PW91, PBEPBE, and BPV86, are examined. Different basis sets, such as 6-$31G^*$, 6-31+G (d, p), 6-311+G (d, p), and 6-311++G (d, p), are also considered. The M06-2X/6-$31G^*$ level is superior to all other density functional methods used in predicting the geometry of TPOP24N-Oxide. The geometries of regioisomeric chlorin N-oxide and oxoporphyrin N-oxide are reported using M06-2X/6-$31G^*$ method. The geometry effects of oxoporphyrin and chlorin N-oxide regioisomers are increased ${\beta}-{\beta}$ bond lengths by N-oxidation because the bond overlap index due to charge transfers is decreased. In N-oxidation ring (II, III), angles that include ${\beta}-{\beta}$ bond length increase as the bond overlap index of ${\beta}-{\beta}$ bond is decreased by N-oxidation. The potential energy surfaces of chlorin N-oxide and oxoporphyrin N-oxide are explored by M06-2X/6-$31G^*$, and single-point calculations are performed at levels up to M06-2X/6-311++G (d, p). Total and relative energies are then calculated. The results indicate that chlorin 24 N-oxides are more stable than chlorin 22 N-oxides in chlorin N-oxide regioisomers. Moreover, TPOP24N-Oxide is less stable than TPOP22N-Oxide.

mPW1PW91 Calculated Conformational Study of Calix[n]arene (n = 4,5,6): Hydrogen Bond (캘릭스[n]아렌(n = 4,5,6)의 이형체들의 상대적인 안정성과 수소결합에 대한 양자역학적 계산연구)

  • Kim, Kwang-Ho;Choe, Jong-In
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.640-652
    • /
    • 2009
  • We have performed mPW1PW91 calculations to investigate the conformational characteristics and hydrogen bonds of p-tert-butylcalix[4]arene (1), p-tert-butylcalix[5]arene (2), calix[6]arene (3) and p-tertbutylcalix[6]arene (4). The structures of the different conformers of 1-3 were optimized by using mPW1PW91/6-31+G(d,p) method. The relative stability of the four conformers of 1 is in the following order: cone (most stable) > partial-cone > 1,2-alternate > 1,3-alternate. The relative stability of the conformers of 2 is in the following order: cone (most stable) > 1,2-alternate > partial-cone > 1,3-alternate. The relative stability of the various conformers of 3 is in the following order: cone (pinched: most stable) > partial-cone > cone (winged) - 1,2-alternate - 1,2,3-alternate > 1,4-alternate > 1,3-alternate > 1,3,5-alternate. The structures of the various conformers of 4 were optimized by using the mPW1PW91/6-31G(d,p) method followed by single point calculation of mPW1PW91/6-31+G(d,p). The relative stability of the conformers of 4 is in the following order: cone (pinched) > 1,2-alternate > cone (winged) > 1,4-alternate - partial-cone > 1,2,3-alternate > 1,3,5-alternate > 1,3-alternate. The primary factor affecting the relative stabilities of the various conformers of the 1-4 are the number and strength of the intramolecular hydrogen bonds. The hydrogen-bond distances are discussed based on two different calculation methods (B3LYP and mPW1PW91).

Theoretical Calculations of Metol as Corrosion Inhibitor of Steel (강철 부식 방지제인 메톨에 대한 이론적 계산)

  • Gece, Gokhan
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.671-676
    • /
    • 2009
  • Described here for the first time is an investigation on geometrical and electronic molecular structure of metol (N-methyl-p-aminophenol sulphate) as corrosion inhibitor of steel using density functional theory (DFT) calculations. Quantum chemical parameters such as highest occupied molecular orbital energy (EHOMO), lowest unoccupied molecular orbital energy (ELUMO), energy gap ((${\Delta}E$), Mulliken charges (($q_M$) and natural atomic (($q_n$) charge have been calculated both for gas and aqueous phases by using B3LYP/6-31G+(d,p) basis set. The relation between the inhibition efficiency and quantum chemical parameters have been discussed in order to elucidate the inhibition mechanism of the title compound.