• Title/Summary/Keyword: DED

Search Result 96, Processing Time 0.023 seconds

Study on Structure and Principle of Linear Block Error Correction Code (선형 블록 오류정정코드의 구조와 원리에 대한 연구)

  • Moon, Hyun-Chan;Kal, Hong-Ju;Lee, Won-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.4
    • /
    • pp.721-728
    • /
    • 2018
  • This paper introduces various linear block error correction code and compares performances of the correction circuits. As the risk of errors due to power noise has increased, ECC(: Error Correction Code) has been introduced to prevent the bit error. There are two representatives of ECC structures which are SEC-DED(: Single Error Correction Double Error Detection) and SEC-DED-DAEC(: Double Adjacent Error Correction). According to simulation results, the SEC-DED circuit has advantages of small area and short delay time compared to SEC-DED-DAEC circuits. In case of SED-DED-DAEC, there is no big difference between Dutta's and Pedro's from performance point of view. Therefore, Pedro's code is more efficient than Dutta' code since the correction rate of Pedro's code is higher than that of Dutta's code.

DED Interaction of FADD and Caspase-8 in the Induction of Apoptotic Cell Death

  • Park, Young-Hoon;Han, Chang Woo;Jeong, Mi Suk;Jang, Se Bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.1034-1040
    • /
    • 2022
  • Fas-associated death domain (FADD) is an adapter molecule that bridges the interaction between receptor-interacting protein 1 (RIP1) and aspartate-specific cysteine protease-8 (caspase-8). As the primary mediator of apoptotic cell death, caspase-8 has two N-terminal death-effector domains (DEDs) and it interacts with other proteins in the DED subfamily through several conserved residues. In the tumor necrosis receptor-1 (TNFR-1)-dependent signaling pathway, apoptosis is triggered by the caspase-8/FADD complex by stimulating receptor internalization. However, the molecular mechanism of complex formation by the DED proteins remains poorly understood. Here, we found that direct DED-DED interaction between FADD and caspase-8 and the structure-based mutations (Y8D/I128A, E12A/I128A, E12R/I128A, K39A/I128A, K39D/I128A, F122A/I128A, and L123A/I128A) of caspase-8 disrupted formation of the stable DED complex with FADD. Moreover, the monomeric crystal structure of the caspase-8 DEDs (F122A/I128A) was solved at 1.7 Å. This study will provide new insight into the interaction mechanism and structural characteristics between FADD and caspase-8 DED subfamily proteins.

Are Serum Vitamin D Levels Associated With Dry Eye Disease? Results From the Study Group for Environmental Eye Disease

  • Jeon, Da-Hye;Yeom, Hyungseon;Yang, Jaewon;Song, Jong Suk;Lee, Hyung Keun;Kim, Hyeon Chang
    • Journal of Preventive Medicine and Public Health
    • /
    • v.50 no.6
    • /
    • pp.369-376
    • /
    • 2017
  • Objectives: Dry eye disease (DED) is an increasingly important public health problem in Korea. Previous studies conducted in Korea have reported inconsistent results regarding the protective effects of vitamin D on DED, and these discrepancies may be related to the relatively simple questionnaire that has been used. Thus, we evaluated the association of serum vitamin D levels with DED using the ocular surface disease index (OSDI). Methods: The present study evaluated data from participants in the Study Group for Environmental Eye Disease (2014-2015). This group included data from 752 participants, and data from 740 participants (253 men and 487 women) were analyzed in the present study. DED severity was evaluated using the OSDI. Results: Higher serum vitamin D levels were associated with a non-significantly reduced risk of DED in the crude analysis (odds ratio [OR], 0.991; 95% confidence interval [CI], 0.971 to 1.011) and in the adjusted analysis (OR, 0.988; 95% CI, 0.966 to 1.010). In the crude analysis of no/mild DED vs. moderate/severe DED, men exhibited a decreased risk with increasing serum vitamin D levels (OR, 0.999; 95% CI, 0.950 to 1.051), while women exhibited an increased risk (OR, 1.003; 95% CI, 0.979 to 1.027). In these analyses, we found no significant associations. Conclusions: The findings of the present study support previous reports that serum vitamin D levels are not associated with DED.

A New Approach to Multi-objective Error Correcting Code Design Method (다목적 Error Correcting Code의 새로운 설계방법)

  • Lee, Hee-Sung;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.611-616
    • /
    • 2008
  • Error correcting codes (ECCs) are commonly used to protect against the soft errors. Single error correcting and double error detecting (SEC-DED) codes are generally used for this purpose. The proposed approach in this paper selectively reduced power consumption, delay, and area in single-error correcting, double error-detecting checker circuits that perform memory error correction. The multi-objective genetic algorithm is employed to solve the non -linear optimization problem. The proposed method allows that user can choose one of different non-dominated solutions depending on which consideration is important among them. Because we use multi-objective genetic algorithm, we can find various dominated solutions. Therefore, we can choose the ECC according to the important factor of the power, delay and area. The method is applied to odd-column weight Hsiao code which is well- known ECC code and experiments were performed to show the performance of the proposed method.

Study on Corrosion Properties of Additive Manufactured 316L Stainless Steel and Alloy 625 in Seawater

  • Jung, Geun-Su;Park, Yong-Ha;Kim, Dae-Jung;Lim, Chae-Seon
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.258-266
    • /
    • 2019
  • The objective of this study was to evaluate corrosion resistance of additive manufactured 316L stainless steel and alloy 625 powders widely used in corrosion resistance alloys of marine industry in comparison with cast alloys. Directed Energy Deposition (DED) method was used in this work for sample production. DED parameter adjustment was also studied for optimum manufacturing and for minimizing the influence of defects on corrosion property. Additive manufactured alloys showed lower corrosion resistance in seawater compared to cast alloys. The reason for the degradation of anti-corrosion property was speculated to be due to loss of microstructural integrity intrinsic to the additive manufacturing process. Application of heat treatment with various conditions after DED was attempted. The effect of heat treatments was analyzed with a microstructure study. It was found that 316L and alloy 625 produced by the DED process could recover their expected corrosion resistance when heat treated at 1200 ℃.

Deposition Characteristics and Mechanical Properties of Stainless Steel 316L Fabricated via Directed Energy Deposition (에너지 제어 용착을 이용한 스테인리스 316L의 적층 특성 및 기계적 물성 평가)

  • Yang, Seung-weon;Lee, Hyub;Shim, Do-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.59-69
    • /
    • 2021
  • Directed energy deposition (DED) is an additive manufacturing technology involving a focused high-power laser or electron beam propagating over the substrate, resulting in melt pool formation while simultaneously supplying metal powder to the melt pool area to deposit the material. DED is performed to repair and strengthen parts in various applications, as it can be easily integrate local area cladding and cross-material deposition. In this study, we characterize stainless steel 316 L parts fabricated via DED based on various deposition conditions and geometries to widen the application of DED. The deposition characteristics are investigated by varying the laser power and powder feed rate. Multilayer deposition with a laser power of 362 W and a powder feed rate of 6.61 g/min indicate a height closest to the design value while affording high surface quality. The microhardness of the specimen increases from the top to the bottom of the deposited area. Tensile tests of specimens with two different deposition directions indicate that horizontally long specimens with respect to a substrate demonstrate a higher ultimate tensile strength and yield strength than vertically long specimens with lower elongation.

Investigation into the Effects of Process Parameters of DED Process on Deposition and Residual Stress Characteristics for Remanufacturing of Mechanical Parts (기계 부품 재제조를 위한 DED 공정 조건에 따른 적층 및 잔류응력 특성 분석)

  • Kim, D.A.;Lee, K.K.;Ahn, D.G.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.109-118
    • /
    • 2021
  • Recently, there has been an increased interest in the remanufacturing of mechanical parts using metal additive manufacturing processes in regards to resource recycling and carbon neutrality. DED (directed energy deposition) process can create desired metallic shapes on both even and uneven substrate via line-by-line deposition. Hence, DED process is very useful for the repair, retrofit and remanufacturing of mechanical parts with irregular damages. The objective of the current paper is to investigate the effects DED process parameters, including the effects of power and the scan speed of the laser, on deposition and residual stress characteristics for remanufacturing of mechanical parts using experiments and finite element analyses (FEAs). AISI 1045 is used as the substrate material and the feeding powder. The characteristic dimensions of the bead shape and the heat affected zone (HAZ) for different deposition conditions are obtained from the experimental results. Efficiencies of the heat flux model for different deposition conditions are estimated by the comparison of the results of FEAs with those of experiments in terms of the width and the depth of HAZ. In addition, the influence of the process parameters on residual stress distributions in the vicinity of the deposited region is investigated using the results of FEAs. Finally, a suitable deposition condition is predicted in regards to the bead formation and the residual stress.

Tensile Test Results for Metal 3D Printed Specimens of Stainless Steel 316L Manufactured by PBF and DED (스테인리스강 316L 재질의 PBF 및 DED 방식 금속 3D프린팅 시편 인장 시험 결과)

  • Kyungnam Jang;Seunghan Yang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.1
    • /
    • pp.11-19
    • /
    • 2023
  • Additive manufacturing technology, called as 3D printing, is one of fourth industrial revolution technologies that can drive innovation in the manufacturing process, and thus should be applied to nuclear industry for various purposes according to the manufacturing trend change in the future. In this paper, we performed tensile tests of 3D printed stainless steel 316L as-built specimens manufactured by two types of technology; DED (Directed Energy Deposition) and PBF (Powder Bed Fusion). Their mechanical properties (tensile strength, yield strength, elongation and reduction of area) were compared. As a result of comparison, the mechanical properties of the PBF specimens were slightly better than those of DED specimens. In the same additive type of specimens, the tensile and yield strength of specimens in the X and Y direction were higher than those in the Z direction, but the elongation and ROA were lower.

SEC-DED-DAEC codes without mis-correction for protecting on-chip memories (오정정 없이 온칩 메모리 보호를 위한 SEC-DED-DAEC 부호)

  • Jun, Hoyoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1559-1562
    • /
    • 2022
  • As electronic devices technology scales down into the deep-submicron to achieve high-density, low power and high performance integrated circuits, multiple bit upsets by soft errors have become a major threat to on-chip memory systems. To address the soft error problem, single error correction, double error detection and double adjacent error correction (SEC-DED-DAEC) codes have been recently proposed. But these codes do not troubleshoot mis-correction problem. We propose the SEC-DED_DAEC code with without mis-correction. The decoder for proposed code is implemented as hardware and verified. The results show that there is no mis-correction in the proposed codes and the decoder can be employed on-chip memory system.

Effects of Low-level Light Therapy at 740 nm on Dry Eye Disease In Vivo

  • Goo, Hyeyoon;Kim, Hoon;Ahn, Jin-Chul;Cho, Kyong Jin
    • Medical Lasers
    • /
    • v.8 no.2
    • /
    • pp.50-58
    • /
    • 2019
  • Background and Objectives Low-level light therapy (LLLT) is an application of low-power light for various purposes such as promoting tissue repair, reducing inflammation, causing analgesia, etc. A previous study suggested the effect of light emitting diode (LED) light with the wavelength of 740 nm for promoting wound healing of corneal epithelial cells. This current study aimed to confirm the effect of LLLT for managing inflammation of a dry eye disease (DED) mouse model. Materials and Methods A total of 50C57BL/6 female mice were randomly grouped into 5 groups to compare the effect of LLLT:1) Control group, 2) Only LLLT group, 3) Dry eye group, 4) LLLT in dry eye group, and 5) Early treatment group. DED was induced with 4 daily injections of scopolamine hydrobromide and desiccation stress for 17 days, and LLLT at 740 nm was conducted once every 3 days. To analyze the effect of LLLT on the DED mouse model, tear volume, corneal surface irregularities, and fluorescence in stained cores were measured, and the level of inflammation was assessed with immunohistochemistry. Results The DED mouse model showed significant deterioration in the overall eye condition. After LLLT, the amount of tear volume was increased, and corneal surface irregularities were restored. Also, the number of neutrophils and the level of inflammatory cytokines significantly decreased as well. Conclusion This study showed that LLLT at 740 nm was effective in controlling the corneal conditions and the degree of inflammation in DED. Such findings may suggest therapeutic effects of LLLT at 740 nm on DED.