• Title/Summary/Keyword: DC-voltage

Search Result 4,533, Processing Time 0.029 seconds

Analysis and Design of a Current-fed Two Inductor Bi-directional DC/DC Converter using Resonance for a Wide Voltage Range

  • Noh, Yong-Su;Kim, Bum-Jun;Choi, Sung-Chon;Kim, Do-Yun;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1634-1644
    • /
    • 2016
  • In this paper, a current-fed two-inductor bi-directional DC/DC converter using resonance (CF-TIBCR) and its design method are proposed. The CF-TIBCR has characteristics of low current ripple and a high current rating because of two separated inductors. Also, it achieves zero voltage switching for all switches and zero current switching for switches of a low voltage stage by using the resonant tank. Besides, a voltage spike problem in conventional current-fed converters is solved without the need for an additional snubber or clamping circuits. As a result, the CF-TIBCR features high step-up and high efficiency. Since the proposed converter has difficulty achieving the soft-switching condition when the converter requires the low voltage transfer ratio, a method that varies the number of resonant cycles is adopted to extend the output voltage range with satisfying the soft-switching condition. The principles of the operation characteristics are presented with a theoretical analysis, and the proposed converter is verified through results of an experiment using a laboratory prototype.

A Wide Voltage-Gain Range Asymmetric H-Bridge Bidirectional DC-DC Converter with a Common Ground for Energy Storage Systems

  • Zhang, Yun;Gao, Yongping;Li, Jing;Sumner, Mark
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.343-355
    • /
    • 2018
  • A wide-voltage-conversion range bidirectional DC-DC converter is proposed in this paper. The topology is comprised of one typical LC energy storage component and a special common grounded asymmetric H-bridge with four active power switches/anti-parallel diodes. The narrow output PWM voltage is generated from the voltage difference between two normal (wider) output PWM voltages from the asymmetric H-bridge with duty cycles close to 0.5. The equivalent switching frequency of the output PWM voltage is double the actual switching frequency, and a wide step-down/step-up ratio range is achieved. A 300W prototype has been constructed to validate the feasibility and effectiveness of the proposed bidirectional converter between the variable low voltage side (24V~48V) and the constant high voltage side (200V). The slave active power switches allow ZVS turn-on and turn-off without requiring any extra hardware. The maximum conversion efficiency is 94.7% in the step-down mode and 93.5% in the step-up mode. Therefore, the proposed bidirectional topology with a common ground is suitable for energy storage systems such as renewable power generation systems and electric vehicles with a hybrid energy source.

Control of Input Series Output Parallel Connected DC-DC Converters

  • Natarajan, Sirukarumbur Pandurangan;Anandhi, Thangavel Saroja
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.265-270
    • /
    • 2007
  • Equal rating DC-DC converter modules can be connected in series at the input for circuits requiring higher input voltages and in parallel at the output for circuits requiring higher output currents. Since the converter modules may not be practically identical, closed loop control has to ensure that each module equally shares the total input voltage and the load current. A control scheme consisting of a common output voltage loop, individual inner current loops and individual input voltage loops have been designed in this work to achieve input voltage and load current sharing as well as load voltage regulation under supply and load disturbances. The output voltage loop provides the basic reference for the inner current loops, which are also modified by the respective input voltage loops. The average of the converter input voltages, which is dynamically varying, is chosen as the reference for input voltage loops. This choice of reference eliminates interaction among different control loops. Type II compensators and Fuzzy Logic Controllers (FLCs) are designed and compared through MATLAB based simulation and FLC is found to be satisfactory. Hence TMS320F2407A DSP based FLC is implemented and the results are presented which prove the superiority of the FLC developed for this research.

Study on the Voltage Stabilization Technology Using Photovoltaic Generation Simulator in Three-Level Bipolar Type DC Microgrid

  • Kim, Taehoon;Kim, Juyong;Cho, Jintae;Jung, Jae-Seung
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1123-1130
    • /
    • 2018
  • Voltage stabilization is an essential component of power quality in low voltage DC (LVDC) microgrid. The microgrid demands the interconnection of a number of small distributed power resources, including variable renewable generators. Therefore, the voltage can be maintained in a stable manner through the control of these distributed generators. In this study, we did research on the new advanced operating method for a photovoltaic (PV) simulator in order to achieve interconnection to a bipolar LVDC microgrid. The validity of this voltage stabilization method, using the distributed generators, is experimentally verified. The test LVDC microgrid is configured by connecting the developed PV simulator and DC load, DC line, and AC/DC rectifier for connecting the main AC grid. The new advanced control method is applied to the developed PV simulator for the bipolar LVDC grid in order to stabilize the gird voltage. Using simulation results, the stabilization of the grid voltage by PV simulator using the proposed control method is confirmed the through the simulation results in various operation scenarios.

A New Control Strategy for Input Voltage Sharing in Input Series Output Independent Modular DC-DC Converters

  • Yang, Wei;Zhang, Zhijie;Yang, Shiyan
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.632-640
    • /
    • 2017
  • Input series output independent (ISOI) dc-dc converter systems are suitable for high voltage input and multiple output applications with low voltage rating switches. This paper proposes a novel control strategy consisting of one output voltage regulating (OVR) control loop and n-1 (n is the number of modules in the ISOI system) input voltage sharing (IVS) control loops. An ISOI system with the proposed control strategy can be applied to applications where the output loads of each module are the same. Under these conditions, IVS can be achieved and output voltages copying can be realized in an ISOI system. In this control strategy there is only one controller for each module and the design process of the control loops is simple. Since no central controller is needed in the system, modularity of the system is improved. The operation principle of the new control strategy is introduced and the control effect is simulated. Then the output power and voltage characteristics of an ISOI system under this new control strategy are analyzed. The stability of the proposed control strategy is explored base on a Hurwitz criterion, and the design guide line of the control strategy is given. A two module ISOI system prototype is fabricated and tested in the laboratory. Experimental results verify the effectiveness of the proposed control strategy.

Design of the Driver of 7W Class LED Lamps as a Substitute for Incandescent Lamps (백열전구 대체용 7w급 LED 램프의 드라이버 설계)

  • Park, Young-San;Bae, Cherl-O
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.2
    • /
    • pp.235-240
    • /
    • 2010
  • In order to substitute incandescent lamps, a power supply device for 7W class LED lamps which are environmentally friendly and energy saving is designed LED lamps consist of a multitude of chip LED connected in parallel and series. 11ms it is necessary to supply LED lamps with DC voltage and current. However, when LED lamps are in use, they are connected directly to AC 220V. This is why we need to have AC/DC, DC/DC power converters including a control system of voltage and current. For this, a transformerless and simple LED lamp driver is designed 조ich can control the current and output voltage for LED string of LED lamp.

Development of a 10kw stand-alone power processing unit for SOFC (고체산화물형 연료전지를 위한 10㎾급 독립전력변환장치의 개발)

  • 이진희;조진상;장민수;최세완;한수빈
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.6
    • /
    • pp.551-560
    • /
    • 2003
  • This paper summarizes development of a 10KW stand-alone power processing unit for 5KW SOFC-low voltage battery hybrid fuel cell power generation system. The power processing unit Includes three parts a high frequency DC-DC converter boosts low fuel cell voltage, a DC-AC inverter converts a dc voltage into a regulated ac voltage and a bidirectional DC-DC converter charges or discharges the battery. The converter topology, design, control method, and experimental result arc presented to meet the specifications such as efficiency of 90% and cost of $40/KW laid down for the "2003 Future Energy Challenge Competition" organized by the U.S. Department of Energy and IEEE. and IEEE.

Forward-Flyback DC-DC Converter for the Low Voltage and High Current Applications (저전압 대전류용 Forward-Flyback DC-DC 컨버터)

  • Hwang, Sun-Min;Park, Sung-Kyu;Cho, In-Ho;Ahn, Tae-Young
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.980-982
    • /
    • 2002
  • In this paper, we report the experimental results of the Forward-flyback DC-DC converter with current doubler and synchronous rectifier. The experimental converter, that has a output voltage 1.8V, output current 25A, maximum power of 45W, switching frequency of 290kHz and input voltage range of 36-75V, has been successfully implemented. As a result, in the entire voltage range the measured full load efficiency was above 82%, and the output voltage was regulated at 1.8V within ${\pm}$3% tolerance.

  • PDF

Nonisolated Two-Phase Bidirectional DC-DC Converter with Zero-Voltage-Transition for Battery Energy Storage System

  • Lim, Chang-Soon;Lee, Kui-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2237-2246
    • /
    • 2017
  • A nonisolated two-phase bidirectional dc-dc converter (NTPBDC) is a very attractive solution for the battery energy storage system (BESS) applications due to the high voltage conversion ratio and the reduced conduction loss of the switching devices. However, a hard-switching based NTPBDC decreases the overall voltage conversion efficiency. To overcome this problem, this paper proposes a novel NTPBDC with zero-voltage-transition (NTPBDC -ZVT). The soft-switching for the boost and buck main switches is achieved by using a resonant cell, which consists of a single resonant inductor and four auxiliary switches. Furthermore, due to the single resonant inductor, the proposed NTPBDC-ZVT has the advantages of simple implementation, reduced size, and low cost. The validity of the proposed NTPBDC-ZVT is verified through experimental results.

A Study on Residual DC in the IPS-LCD by Voltage-Transmittance Hysteresis Method on a Rubbed Polyimide Layer (러빙된 폴리이미드 층에서의 전압-투과율 히스테리시스법 이용한 IPS-LCD의 잔류 DC 전압 특성에 관한 연구)

  • 이윤건;황정연;서대식;김향율;김재형
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.656-659
    • /
    • 2001
  • We investigated the residual DC in the in-plane switching (IPS)-liquid crystal display(LCD) by voltage-transmittance (V-T) hysteresis method. Several IPS-LCD which have different concentrations of cynao LCs and different resistivities of fluorine LCs were fabricated. We found that the residual DC voltage of the IPS-LCD was decreasing with increasing concentration of cyano LCs and increasing with decreasing specific resistivity of fluorine LC materials. The residual DC voltage property can be improved by low molecular weight and high polarity of cyano LC.

  • PDF