DOI QR코드

DOI QR Code

Nonisolated Two-Phase Bidirectional DC-DC Converter with Zero-Voltage-Transition for Battery Energy Storage System

  • Lim, Chang-Soon (Mechatronics R&D Center, Samsung Electronics Company, Ltd.) ;
  • Lee, Kui-Jun (Dept. of Electrical Engineering, Korea National University of Transportation)
  • Received : 2017.03.20
  • Accepted : 2017.07.17
  • Published : 2017.11.01

Abstract

A nonisolated two-phase bidirectional dc-dc converter (NTPBDC) is a very attractive solution for the battery energy storage system (BESS) applications due to the high voltage conversion ratio and the reduced conduction loss of the switching devices. However, a hard-switching based NTPBDC decreases the overall voltage conversion efficiency. To overcome this problem, this paper proposes a novel NTPBDC with zero-voltage-transition (NTPBDC -ZVT). The soft-switching for the boost and buck main switches is achieved by using a resonant cell, which consists of a single resonant inductor and four auxiliary switches. Furthermore, due to the single resonant inductor, the proposed NTPBDC-ZVT has the advantages of simple implementation, reduced size, and low cost. The validity of the proposed NTPBDC-ZVT is verified through experimental results.

Keywords

References

  1. E. S. Sreeraj, K. Chatterjee, and S. Bandyopadhyay, "One-cycle-controlled single-stage single-phase voltage-sensorless grid- connected PV system," IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 1216-1224, Mar. 2013. https://doi.org/10.1109/TIE.2012.2191755
  2. H. Beltran, E. Bilbao, E. Belenguer, I. Etxeberria-Otadui, and P. Rodriguez, "Evaluation of storage energy requirements for constant production in PV power plants," IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 1225-1234, Mar. 2013. https://doi.org/10.1109/TIE.2012.2202353
  3. Y. Xia, K. H. Ahmed, and B. W. Williams, "Wind turbine power coefficient analysis of a new maximum power point tracking technique," IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 1122-1132, Mar. 2013. https://doi.org/10.1109/TIE.2012.2206332
  4. X. Lu, K. Sun, J. M. Guerrero, J. C. Vasquez, and L. Huang, "State-of-Charge Balance Using Adaptive Droop Control for Distributed Energy Storage Systems in DC Microgrid Applications," IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2804-2815, Jun. 2014. https://doi.org/10.1109/TIE.2013.2279374
  5. B. Zhao, Q. Song, W. Liu, and Y. Sun, "A Synthetic Discrete Design Methodology of High-Frequency Isolated Bidirectional DC/DC Converter for Grid-Connected Battery Energy Storage System Using Advanced Components," IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5402-5410, Oct. 2014. https://doi.org/10.1109/TIE.2014.2304915
  6. Z. Ding, C. Yang, Z. Zhang, C. Wang, and S. Xie, "A Novel Soft-Switching Multiport Bidirectional DCDC Converter for Hybrid Energy Storage System, " IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1595-1609, Apr. 2014. https://doi.org/10.1109/TPEL.2013.2264596
  7. C. S. Lim, K. J. Lee, N. J. Ku, D. S. Hyun, and R. Y. Kim, "A Modularized Equalization Method Based on Magnetizing Energy for a Series-Connected Lithium-Ion Battery String," IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1791-1799, Apr. 2014. https://doi.org/10.1109/TPEL.2013.2270000
  8. C.-H. Kim, M.-Y. Kim, H.-S. Park, and G.-W. Moon, "A modularized two-stage charge equalizer with cell selection switches for series-connected lithium-ion battery string in an HEV," IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3764-3774, Aug. 2012. https://doi.org/10.1109/TPEL.2012.2185248
  9. C.-H. Kim, M.-Y. Kim, H.-S. Park, and G.-W. Moon, "A modularized charge equalizer using a battery monitoring IC for series-connected li-ion battery strings in electric vehicles," IEEE Trans. Power Electron., vol. 28, no. 8, pp. 3779-3787, Aug. 2013. https://doi.org/10.1109/TPEL.2012.2227810
  10. R. J. Wai and R. Y. Duan, "High-efficiency bidirectional converter for power sources with great voltage diversity," IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1986-1996, Sep. 2007. https://doi.org/10.1109/TPEL.2007.904167
  11. Y.-P. Hsieh, J.-F. Chen, L.-S. Yang, C.-Y. Wu, and W.-S. Liu, "High-conversion-ratio bidirectional DCDC converter with coupled-inductor," IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 210-222, Jan. 2014. https://doi.org/10.1109/TIE.2013.2244541
  12. H. Li, F. Z. Peng, and J. S. Lawler, "A natural ZVS medium-power bidirectional dc-dc converter with minimum number of devices," IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 525-535, Mar./Apr. 2003. https://doi.org/10.1109/TIA.2003.808965
  13. F. Z. Peng, H. Li, G. J. Su, and J. S. Lawler, "A new ZVS bidirectional dc-dc converter for fuel cell and battery application," IEEE Trans. Power Electron., vol. 19, no. 1, pp. 54-65, Jan. 2004. https://doi.org/10.1109/TPEL.2003.820550
  14. G. Ma, W. Qu, G. Yu, Y. Liu, N. Liang, and W. Li, "A zero-voltage-switching bidirectional dc-dc converter with state analysis and soft-switching-oriented design consideration," IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 2174-2184, Jun. 2009. https://doi.org/10.1109/TIE.2009.2017566
  15. K. Wu, C. W. de Silva, and W. G. Dunford, "Stability analysis of isolated bidirectional dual active fullbridge dc-dc converter with triple phase-shift control," IEEE Trans. Power Electron., vol. 27, no. 4, pp. 2007-2017, Apr. 2012. https://doi.org/10.1109/TPEL.2011.2167243
  16. S. Inoue and H. Akagi, "A bidirectional dc-dc converter for an energy storage system with galvanic isolation," IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2299-2306, Nov. 2007. https://doi.org/10.1109/TPEL.2007.909248
  17. Y. Xie, J. Sun, and J. S. Freudenberg, "Power flow characterization of a bidirectional galvanically isolated high-power dc/dc converter over a wide operating range," IEEE Trans. Power Electron., vol. 25, no. 1, pp. 54-66, Jan. 2010. https://doi.org/10.1109/TPEL.2009.2024151
  18. H.-J. Choi, W.-B. Lee, and J.-H. Jung, "Practical Design Methodology of Dual Active Bridge Converter as Isolated Bi-directional DC-DC Converter for Solid State Transformer," The Transactions of the Korean Institute of Power Electronics, vol. 22, no. 2, pp. 102-108, Apr. 2017. https://doi.org/10.6113/TKPE.2017.22.2.102
  19. L. Zhu, "A novel soft-commutating isolated boost full-bridge ZVS-PWM dc-dc converter for bidirectional high power applications," IEEE Trans. Power Electron., vol. 21, no. 2, pp. 422-429, Mar. 2006. https://doi.org/10.1109/TPEL.2005.869730
  20. T. F. Wu, Y. C. Chen, J. G. Yang, and C. L. kuo, "Isolated bidirectional full-bridge dc-dc converter with a flyback snubber," IEEE Trans. Power Electron., vol. 25, no. 7, pp. 1915-1922, Jul. 2010. https://doi.org/10.1109/TPEL.2010.2043542
  21. G. Chen, Y. S. Lee, S. Y. R. Hui, D. Xu, and Y. Wang, "Actively clamped bidirectional flyback converter," IEEE Trans. Ind. Electron., vol. 47, no. 4, pp. 770-779, Aug. 2000. https://doi.org/10.1109/41.857957
  22. F. Zhang and Y. Yan, "Novel forward-flyback hybrid bidirectional dc-dc converter," IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1578-1584, May. 2009. https://doi.org/10.1109/TIE.2008.2009561
  23. A. S. Samosir and A. H. M. Yatim, "Implementation of dynamic evolution control of bidirectional dc-dc converter for interfacing ultracapacitor energy storage to fuel-cell system," IEEE Trans. Ind. Electron., vol. 57, no. 10, pp. 3468-3473, Oct. 2010. https://doi.org/10.1109/TIE.2009.2039458
  24. M. B. Camara, H. Gualous, F. Gustin, A. Berthon, and B. Dakyo, "DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications - Polynomial control strategy," IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 587-597, Feb. 2010. https://doi.org/10.1109/TIE.2009.2025283
  25. L. R. Chen, N. Y. Chu, C. S. Wang, and R. H. Liang, "Design of a reflex-based bidirectional converter with the energy recovery function," IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 3022-3029, Aug. 2008. https://doi.org/10.1109/TIE.2008.918609
  26. H.-C. Park and I.-S. Kim, "Bi-directional Buck-Boost Converter Controller Design Method for ESS using Matlab SISO TOOL," The Transactions of the Korean Institute of Power Electronics, vol. 21, no. 6, pp. 457-464, Dec. 2016. https://doi.org/10.6113/TKPE.2016.21.6.457
  27. K. Jin, M. Yang, X. Ruan, and M. Xu, "Three-level bidirectional converter for fuel-cell/battery hybrid power system," IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 1976-1986, Jun. 2010. https://doi.org/10.1109/TIE.2009.2031197
  28. F. Z. Peng, F. Zhang, and Z. Qian, "A magnetic-less dc-dc converter for dual-voltage automotive systems," IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 511-518, Mar./Apr. 2003. https://doi.org/10.1109/TIA.2003.808945
  29. I. D. Kim, S. H. Paeng, J. W. Ahn, E. C. Nho, and J. S. Ko, "New bidirectional ZVS PWM sepic/zeta dc-dc converter," in Proc. IEEE ISIE, 2007, pp. 555-560.
  30. Y. S. Lee and Y. Y. Chiu, "Zero-current-switching switched-capacitor bidirectional dc-dc converter," Proc. Inst. Elect. Eng. - Elect. Power Appl., vol. 152, no. 6, pp. 1525-1530, Nov. 2005. https://doi.org/10.1049/ip-epa:20050138
  31. R. J. Wai and R. Y. Duan, "High-efficiency bidirectional converter for power sources with great voltage diversity," IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1986-1996, Sep. 2007. https://doi.org/10.1109/TPEL.2007.904167
  32. H. Wu, J. Lu, W. Shi, and Y. Xing, "Nonisolated bidirectional dc-dc converters with negative coupled inductor," IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2231-2235, May 2012. https://doi.org/10.1109/TPEL.2011.2180540