DOI QR코드

DOI QR Code

A Wide Voltage-Gain Range Asymmetric H-Bridge Bidirectional DC-DC Converter with a Common Ground for Energy Storage Systems

  • Zhang, Yun (School of Electrical and Information Engineering, Tianjin University) ;
  • Gao, Yongping (School of Electrical and Information Engineering, Tianjin University) ;
  • Li, Jing (Department of Electrical and Electronic Engineering, University of Nottingham Ningbo China) ;
  • Sumner, Mark (Department of Electrical and Electronic Engineering, University of Nottingham)
  • Received : 2017.05.29
  • Accepted : 2017.10.15
  • Published : 2018.03.20

Abstract

A wide-voltage-conversion range bidirectional DC-DC converter is proposed in this paper. The topology is comprised of one typical LC energy storage component and a special common grounded asymmetric H-bridge with four active power switches/anti-parallel diodes. The narrow output PWM voltage is generated from the voltage difference between two normal (wider) output PWM voltages from the asymmetric H-bridge with duty cycles close to 0.5. The equivalent switching frequency of the output PWM voltage is double the actual switching frequency, and a wide step-down/step-up ratio range is achieved. A 300W prototype has been constructed to validate the feasibility and effectiveness of the proposed bidirectional converter between the variable low voltage side (24V~48V) and the constant high voltage side (200V). The slave active power switches allow ZVS turn-on and turn-off without requiring any extra hardware. The maximum conversion efficiency is 94.7% in the step-down mode and 93.5% in the step-up mode. Therefore, the proposed bidirectional topology with a common ground is suitable for energy storage systems such as renewable power generation systems and electric vehicles with a hybrid energy source.

Keywords

E1PWAX_2018_v18n2_343_f0001.png 이미지

Fig. 1. The evolution process of the proposed topology. (a)Bidirectional H-bridge DC-DC converter without a commonground [29]. (b) Evolution process of the proposed topology. (c)Proposed bidirectional DC-DC converter with a commongrounded asymmetric H-bridge.

E1PWAX_2018_v18n2_343_f0002.png 이미지

Fig. 2. PWM modulation strategy in the step-down mode (S2S4=00).

E1PWAX_2018_v18n2_343_f0003.png 이미지

Fig. 3. PWM modulation strategy in step-up mode (S1S3=00).

E1PWAX_2018_v18n2_343_f0004.png 이미지

Fig. 4. Comparison of voltage-conversion ranges for the proposedconverter and the Buck/Boost converter. (a) In the step-downmode. (b) In the step-up mode.

E1PWAX_2018_v18n2_343_f0005.png 이미지

Fig. 5. Synchronous rectification operation principle of theproposed bidirectional converter. (a) Current-flow path in thestep-down mode. (b) Current-flow path in the step-up mode.

E1PWAX_2018_v18n2_343_f0006.png 이미지

Fig. 6. Control strategy of bidirectional power flows.

E1PWAX_2018_v18n2_343_f0007.png 이미지

Fig. 7. Experimental prototype of the asymmetric H-bridgebidirectional DC-DC converter.

E1PWAX_2018_v18n2_343_f0008.png 이미지

Fig. 8. Voltage stress and gate signals of the slave active powerswitches in SR operation. (a) Gate signal and voltage stress of Q2in the step-down mode. (b) Gate signal and voltage stress of Q3in the step-up mode.

E1PWAX_2018_v18n2_343_f0009.png 이미지

Fig. 9. Voltages on the high voltage side (constant 200V) and thecontinuous variable low voltage side (between 24V and 48V). (a)In the step-down mode. (b) In the step-up mode.

E1PWAX_2018_v18n2_343_f0010.png 이미지

Fig. 10. Output PWM voltages, inductor current iL and thecorresponding gate signal-voltage stress in the step-down mode.(a) Uag and Uab. (b) Ubg and the inductor current iL. (c) S1 andUQ1.

E1PWAX_2018_v18n2_343_f0011.png 이미지

Fig. 11. Output PWM voltages, inductor current iL and thecorresponding gate signal-voltage stress in the step-up mode. (a)Uag and Uab. (b) Ubg and the inductor current iL. (c) S4 and UQ4.

E1PWAX_2018_v18n2_343_f0012.png 이미지

Fig. 12. Experimental results of bidirectional operation betweenthe step-down and the step-up modes. (a) Processes of step-up tostep-down and step-down to step-up. (b) Transient process of thestep-down to step-up mode (IL=-4A to 4A). (c) Transientprocess of the step-up to step-down mode (IL=4A to -4A).

E1PWAX_2018_v18n2_343_f0013.png 이미지

Fig. 13. Conversion efficiency of the proposed bidirectionalconverter at different voltages of low voltage side and loadpowers (Ul=24~48V, Uh=200V).

E1PWAX_2018_v18n2_343_f0014.png 이미지

Fig. 14. Calculated power loss distributions for the experimentwhen Ul=48V, Uh=200V, P=300W. (a) In the step-down mode.(b) In the step-up mode.

TABLE I COMPONENT STATES WHEN THE POWER FLOW IS FROM UH TO UL (STEP-DOWN)

E1PWAX_2018_v18n2_343_t0001.png 이미지

TABLE II COMPONENT STATES WHEN THE POWER FLOW IS FROM UL TO UH (STEP-UP)

E1PWAX_2018_v18n2_343_t0002.png 이미지

TABLE III COMPARISONS OF THE PROPOSED AND OTHER BIDIRECTIONAL SOLUTIONS

E1PWAX_2018_v18n2_343_t0003.png 이미지

TABLE IV EXPERIMENTAL PARAMETERS

E1PWAX_2018_v18n2_343_t0004.png 이미지

References

  1. B. Singh and R. Kumar, "Solar photovoltaic array fed water pump driven by brushless DC motor using Landsman converter," IET Renew. Power Gener., Vol. 10, No. 4, pp. 474-484, Apr. 2016. https://doi.org/10.1049/iet-rpg.2015.0295
  2. M. S. Mahmoud, M. S. U. Rahman, and F. M. A.L.-Sunni, "Review of microgrid architectures-a system of systems perspective," IET Renew. Power Gener., Vol. 9, No. 8, pp. 1064-1078, Nov. 2015. https://doi.org/10.1049/iet-rpg.2014.0171
  3. J. d. Santiago, H. Bernhoff, B. Ekergard, S. Eriksson, S. Ferhatovic, R. Waters, and M. Leijon, "Electrical motor drivelines in commercial all-electric vehicles: A review," IEEE Trans. Veh. Technol., Vol. 61, No. 2, pp. 475-484, Feb. 2012. https://doi.org/10.1109/TVT.2011.2177873
  4. C. C. Chan, "The state of the art of electric and hybrid vehicles," Proceedings of the IEEE, Vol. 90, No. 2, pp. 247-275, Feb. 2002. https://doi.org/10.1109/5.989873
  5. D. Wu, F. Tang, T. Dragicevic, J. C. Vasquez, and J. M. Guerrero, "A control architecture to coordinate renewable energy sources and energy storage systems in islanded microgrids," IEEE Trans. Smart Grid, Vol. 6, No. 3, pp. 1156-1166, May 2015. https://doi.org/10.1109/TSG.2014.2377018
  6. N. L. Diaz, T. Dragicevic, J. C. Vasquez, and J. M. Guerrero, "Intelligent distributed generation and storage units for DC microgrids - A new concept on cooperative control without communications beyond droop control," IEEE Trans. Smart Grid, Vol. 5, No. 5, pp. 2476-2485, Sep. 2014. https://doi.org/10.1109/TSG.2014.2341740
  7. H. Yoo, S. Sul, Y. Park, and J. Jeong, "System integration and power-flow management for a series hybrid electric vehicle using supercapacitors and batteries," IEEE Trans. Ind. Appl., Vol. 44, No. 1, pp. 108-114, Jan./Feb. 2008. https://doi.org/10.1109/TIA.2007.912749
  8. K. Hu, P. Yi, and C. Liaw, "An EV SRM drive powered by battery/supercapacitor with G2V and V2H/V2G capabilities," IEEE Trans. Ind. Electron., Vol. 62, No. 8, pp. 4714-4727, Aug. 2015. https://doi.org/10.1109/TIE.2015.2396873
  9. K. Wu, C. W. d. Silva, and W. G. Dunford, "Stability analysis of isolated bidirectional dual active full-bridge DC-DC converter with triple phase-shift control," IEEE Trans. Power Electron., Vol. 27, No. 4, pp. 2007-2017, Apr. 2012. https://doi.org/10.1109/TPEL.2011.2167243
  10. N. Denniston, A. M. Massoud, S. Ahmed, and P. N. Enjeti, "Multiple-module high-gain high-voltage DC-DC transformers for offshore wind energy systems," IEEE Trans. Ind. Electron., Vol. 58, No. 5, pp.1877-1886, May 2011. https://doi.org/10.1109/TIE.2010.2053340
  11. A. Rodriguez, A. Vazquez, D. G. Lamar, M. M. Hernando, and J. Sebastian, "Different purpose design strategies and techniques to improve the performance of a dual active bridge with phase-shift control," IEEE Trans. Power Electron., Vol. 30, No. 2, pp. 790-804, Feb. 2015. https://doi.org/10.1109/TPEL.2014.2309853
  12. A. Ajami, H. Ardi, and A. Farakhor, "A novel high step-up DC/DC converter based on integrating coupled inductor and switched-capacitor techniques for renewable energy applications," IEEE Trans. Power Electron., Vol. 30, No. 8, pp. 4255-4263, Aug. 2015. https://doi.org/10.1109/TPEL.2014.2360495
  13. R. J. Wai and R. Y. Duan, "High-efficiency bidirectional converter for power sources with great voltage diversity," IEEE Trans. Power Electron., Vol. 22, No. 5, pp. 1986-1996, Sep. 2007. https://doi.org/10.1109/TPEL.2007.904167
  14. H. Wu, K. Sun, L. Zhu, L. Chen, and Y. Xing, "High step-up/step-down soft-switching bidirectional DC-DC converter with coupled-inductor and voltage matching control for energy storage systems," IEEE Trans. Ind. Electron, Vol. 63, No. 5, pp. 2892-2903, May 2016. https://doi.org/10.1109/TIE.2016.2517063
  15. C.-C. Lin, L.-S. Yang, and G. W. Wu, "Study of a non-isolated bidirectional DC-DC converter," IET Power Electron., Vol. 6, No. 1, pp. 30-37, Jan. 2013. https://doi.org/10.1049/iet-pel.2012.0338
  16. H. Ardi, A. Ajami, F. Kardan, and S. N. Avilagh, "Analysis and implementation of a nonisolated bidirectional DC-DC converter with high voltage gain," IEEE Trans. Ind. Electron., Vol. 63, No. 8, pp. 4878-4888, Aug. 2016. https://doi.org/10.1109/TIE.2016.2552139
  17. M. Kwon, S. Oh, and S. Choi, "High gain soft-switching bidirectional dc-dc converter for eco-friendly vehicles," IEEE Trans. Power Electron., Vol. 29, No. 4, pp. 1659-1666, Apr. 2014. https://doi.org/10.1109/TPEL.2013.2271328
  18. P. Jose and N. Mohan, "A novel ZVS bidirectional cuk converter for dual voltage systems in automobiles," in Proc. IEEE IECON Conf. Rec., pp. 117-122, 2003.
  19. I.-D. Kim, S.-H. Paeng, J.-W. Ahn, E.-C. Nho, and J.-S. Ko, "New bidirectional ZVS PWM Sepic/Zeta DC-DC converter," in Proc. IEEE ISIE Conf. Rec., pp. 555-560, 2007.
  20. R. J. Wai and R. Y. Duan, "High-efficiency bidirectional converter for power sources with great voltage diversity," IEEE Trans. Power Electron., Vol. 22, No. 5, pp. 1986-1996, Sep. 2007. https://doi.org/10.1109/TPEL.2007.904167
  21. P. U R, and A. K. Rathore, "Extended range ZVS active-clamped current-fed full-bridge isolated DC/DC converter for fuel cell applications: analysis, design, and experimental results," IEEE Trans. Ind. Electron., Vol. 60, No. 7, pp.2661-2672, Jul. 2013. https://doi.org/10.1109/TIE.2012.2194977
  22. L. Jiang, C. C. Mi, S. Li, M. Zhang, X. Zhang, and C. Yin, "A novel soft-switching bidirectional DC-DC converter with coupled inductors," IEEE Trans. Ind. Appl., Vol. 49, No. 6, pp. 2730-2740, Nov./Dec. 2013. https://doi.org/10.1109/TIA.2013.2265874
  23. Y.-F. Wang, L.-K. Xue, C.-S. Wang, P. Wang, and W. Li, "Interleaved high-conversion-ratio bidirectional DC-DC converter for distributed energy-storage systems - Circuit generation, analysis, and design," IEEE Trans. Power Electron., Vol. 31, No. 8, pp. 5547-5561, Aug. 2016. https://doi.org/10.1109/TPEL.2015.2496274
  24. S.-C. Tan, S. Kiratipongvoot, S. Bronstein, A. Ioinovici, Y. M. Lai, and C. K. Tse, "Adaptive mixed on-time and switching frequency control of a system of interleaved switched-capacitor converters," IEEE Trans. Power Electron., Vol. 26, No. 2, pp. 364-380, Feb. 2011. https://doi.org/10.1109/TPEL.2010.2060497
  25. B. Wu, K. Smedley, and S. Sigmond, "A new 3X interleaved bidirectional switched capacitor converter," in Proc. IEEE Appl. Power Electron. Conf. Expo., pp. 1433-1439, 2014.
  26. O. Cornea, G. Andreescu, N. Muntean and D. Hulea, "Bidirectional power flow control in a dc microgrid through a switched-capacitor cell hybrid DC-DC converter," IEEE Trans. Ind. Electron., Vol. 64, No. 4, pp. 3012-3022, Apr. 2017. https://doi.org/10.1109/TIE.2016.2631527
  27. J. Zhang and J. Ge, "Analysis of Z-source DC-DC converter in discontinuous current mode," in Proc. Power Energy Eng. Conf. (APPEEC), pp. 1-4, 2010.
  28. H. Shen, B. Zhang, D. Qiu, and L. Zhou, "A common grounded Z-source DC-DC converter with high voltage gain," IEEE Trans. Ind. Electron., Vol. 63, No. 5, pp.2925-2935, May 2016. https://doi.org/10.1109/TIE.2016.2516505
  29. Y. Zhang, Y. Gao, J. Li, M. Sumner, P. Wang, and L. Zhou, "High ratio bidirectional DC-DC converter with synchronous rectification H-bridge for hybrid energy sources electric vehicles," J. Power Electron., Vol. 16, No. 6, pp. 2035-2044, Nov. 2016. https://doi.org/10.6113/JPE.2016.16.6.2035
  30. B. Wang, J. Xu, R. J. Wai, and B. Cao, "Adaptive sliding-mode with hysteresis control strategy for simple multimode hybrid energy storage system in electric vehicles," IEEE Trans. Ind. Electron., Vol. 64, No. 2, pp.1404-1414, Feb. 2017. https://doi.org/10.1109/TIE.2016.2618778