DOI QR코드

DOI QR Code

A Parameter Selection Method for Multi-Element Resonant Converters with a Resonant Zero Point

  • Wang, Yifeng (Key Laboratory of Smart Grid of the Ministry of Education, Tianjin University) ;
  • Yang, Liang (Key Laboratory of Smart Grid of the Ministry of Education, Tianjin University) ;
  • Li, Guodong (State Grid Tianjin Electric Power Company) ;
  • Tu, Shijie (Repair Branch, State Grid Jiangxi Electric Power Company)
  • 투고 : 2017.05.27
  • 심사 : 2017.10.15
  • 발행 : 2018.03.20

초록

This paper proposes a parameter design method for multi-element resonant converters (MERCs) with a unique resonant zero point (RZP). This method is mainly composed of four steps. These steps include program filtration, loss comparison, 3D figure fine-tuning and priority compromise. It features easy implementation, effectiveness and universal applicability for almost all of the existing RZP-MERCs. Meanwhile, other design methods are always exclusive for a specific topology. In addition, a novel dual-CTL converter is also proposed here. It belongs to the RZP-MERC family and is designed in detail to explain the process of parameter selection. The performance of the proposed method is verified experimentally on a 500W prototype. The obtained results indicate that with the selected parameters, an extensive dc voltage gain is obtained. It also possesses over-current protection and minimal switching loss. The designed converter achieves high efficiencies among wide load ranges, and the peak efficiency reaches 96.9%.

키워드

E1PWAX_2018_v18n2_332_f0001.png 이미지

Fig. 1. Two main RZP structures. (a) Parallel type. (b) Series type.

E1PWAX_2018_v18n2_332_f0002.png 이미지

Fig. 2. RZP-MERC topologies: (a) topology 1; (b) topology 2.

E1PWAX_2018_v18n2_332_f0003.png 이미지

Fig. 3. Block diagram of the proposed parameter design method.

E1PWAX_2018_v18n2_332_f0004.png 이미지

Fig. 4. Topology of the proposed CLTCL converter.

E1PWAX_2018_v18n2_332_f0005.png 이미지

Fig. 5. Equivalent FHA circuit.

E1PWAX_2018_v18n2_332_f0006.png 이미지

Fig. 6. Voltage gain curves at different loads.

E1PWAX_2018_v18n2_332_f0007.png 이미지

Fig. 7. Flow chart of MATLAB.

E1PWAX_2018_v18n2_332_f0008.png 이미지

Fig. 8. RZP positions for different values of C2: (a) C2 = 4.5nF;(b) C2 = 3nF).

E1PWAX_2018_v18n2_332_f0009.png 이미지

Fig. 9. Relations of φin and the resonant parameters. (a) φin versus L1 and L2 at different values of C1. (b) φin versus C1 and L2 at differentvalues of L1.

E1PWAX_2018_v18n2_332_f0010.png 이미지

Fig. 10. Relationships of Mgain and the resonant parameters. (a) L2 = 130μH. (b) L2 = 140μH. (c) L2 = 150μH.

E1PWAX_2018_v18n2_332_f0011.png 이미지

Fig. 11. Relationships of VC1 and the resonant parameters. (a) L2 = 130μH. (b) L2 = 140μH. (c) L2 = 150μH.

E1PWAX_2018_v18n2_332_f0012.png 이미지

Fig. 12. Relationships of VC2 and the resonant parameters. (a) L2 = 130μH. (b) L2 = 140μH. (c) L2 = 150μH.

E1PWAX_2018_v18n2_332_f0013.png 이미지

Fig. 13. Waveforms at the rating condition: (a) voltages andcurrents of S1 and SR1; (b) voltages of C1 and C2.

E1PWAX_2018_v18n2_332_f0014.png 이미지

Fig. 14. Waveforms at different operating frequencies: (a) fs =110kHz; (b) fs = 140kHz; (c) fs ? f0 = 183kHz.

E1PWAX_2018_v18n2_332_f0015.png 이미지

Fig. 15. Comparison of Mgain curves.

E1PWAX_2018_v18n2_332_f0016.png 이미지

Fig. 16. Efficiency curves with different output voltages.

TABLE I RANGES AND STEPS FOR THE RESONANT PARAMETERS

E1PWAX_2018_v18n2_332_t0001.png 이미지

TABLE II PARTIAL SELECTION RESULTS OF MATLAB

E1PWAX_2018_v18n2_332_t0002.png 이미지

TABLE III OPTIMIZED PARAMETERS AND PRIORITIES

E1PWAX_2018_v18n2_332_t0003.png 이미지

TABLE IV LIST OF OPTIMIZED PARAMETERS

E1PWAX_2018_v18n2_332_t0004.png 이미지

참고문헌

  1. C. S. Wang, W. Li, Y. F. Wang, F. Q. Han, Z. Meng, and G. D. Li, "An isolated three-port bidirectional DC-DC converter with enlarged ZVS region for HESS applications in DC microgrids," Energies, Vol. 10, No. 4, 446, Apr. 2017. https://doi.org/10.3390/en10040446
  2. J. H. Han and Y. C. Lim, "Design of an LLC resonant converter for driving multiple LED lights using current balancing of capacitor and transformer," Energies, Vol. 8, No. 3, pp. 2125-2144, Mar. 2015. https://doi.org/10.3390/en8032125
  3. S. Tian, F. C. Lee, and Q Li, "A simplified equivalent circuit model of series resonant converter," IEEE Trans. Power Electron., Vol. 31, No. 5, pp. 3922-3931, May 2016. https://doi.org/10.1109/TPEL.2015.2464351
  4. S. Hu, X. Li, M. Lu, and B. Y. Luan, "Operation modes of a secondary-side phase-shifted resonant converter," Energies, Vol. 8, No. 11, pp. 12314-12330, Oct. 2015. https://doi.org/10.3390/en81112314
  5. R. Beiranvand, B. Rashidian, M. R. Zolghadri, and S. M. H. Alavi, "Optimizing the normalized dead-time and maximum switching frequency of a wide-adjustable-range LLC resonant converter," IEEE Trans. Power Electron., Vol. 26, No. 2, pp. 462-472, Feb. 2011. https://doi.org/10.1109/TPEL.2010.2068563
  6. R. Beiranvand, B. Rashidian, M. R. Zolghadri, and S. M. H. Alavi, "A Design procedure for optimizing the LLC resonant converter as a wide output range voltage source," IEEE Trans. Power Electron., Vol. 27, No. 8, pp. 3749-3763, Aug. 2012. https://doi.org/10.1109/TPEL.2012.2187801
  7. R. Yu, G. K. Y. Ho, B. M. H. Pong, B. W. K. Ling, and J. Lam, "Computer-aided design and optimization of high-efficiency LLC series resonant converter. IEEE Trans. Power Electron., Vol. 27, No. 7, pp. 3243-3256, Jul. 2012. https://doi.org/10.1109/TPEL.2011.2179562
  8. X. Fang, H. Hu, F. Chen, U. Somani, E. Auadisian, J. Shen, and I. Batarseh, "Efficiency-oriented optimal design of the LLC resonant converter based on peak gain placement," IEEE Trans. Power Electron., Vol. 28, No. 5, pp. 2285-2296, May 2013. https://doi.org/10.1109/TPEL.2012.2211895
  9. J. Tian, J. Gao, and Y. Zhang, "Design of a novel integrated L-C-T for PSFB ZVS converters," J. Power Electron., Vol. 17, No. 4, pp. 905-913, Jul. 2017. https://doi.org/10.6113/JPE.2017.17.4.905
  10. J. W. Kim, J. W. Kim, and G. W. Moon, "A new LLC series resonant converter with a narrow switching frequency variation and reduced conduction losses," IEEE Trans. Power Electron., Vol. 29, No. 8, pp. 4278-4287, Aug. 2014. https://doi.org/10.1109/TPEL.2013.2285733
  11. Y. Gu, Z. Lu, L. Hang, Z. Qian, and G. Huang, "Three level LLC series resonant DC/DC converter," IEEE Trans. Power Electron., Vol. 20, No. 4, pp. 781-789, Jul. 2005. https://doi.org/10.1109/TPEL.2005.850921
  12. H. Wu, T. Xia, X. Zhan, P. Xu, and Y. Xing, "Resonant converter with resonant-voltage- multiplier rectifier and constant-frequency phase-shift control for isolated buck-boost power conversion," IEEE Trans. Ind. Electron., Vol. 62, No. 11, pp. 6974-6985, Nov. 2015. https://doi.org/10.1109/TIE.2015.2443097
  13. T. Jiang, J. Zhang, X. Wu, K. Sheng, and Y. Wang, "A bidirectional LLC resonant converter with automatic forward and backward mode transition," IEEE Trans. Power Electron., Vol. 30, No. 2, pp. 757-770, Feb. 2015. https://doi.org/10.1109/TPEL.2014.2307329
  14. J. Wu, Y. Li, X. Sun, and F. Liu, "A new dual-bridge series resonant DC-DC converter with dual-tank," IEEE Trans. Power Electron., to be published.
  15. Y. Guan, Y. Wang, D. Xu, and W. Wang, "A 1 MHz half-bridge resonant DC/DC converter based on GaN FETs and planar magnetics," IEEE Trans. Power Electron., Vol. 32, No. 4, pp. 2876-2891, Apr. 2017. https://doi.org/10.1109/TPEL.2016.2579660
  16. M. Mu and F. C. Lee, "Design and optimization of a 380-12V high-frequency, high-current LLC converter with GaN devices and planar matrix transformers," J. Emerg. Sel. Topics Power Electron., Vol. 4, No. 3, pp. 854-862, Sep. 2016.
  17. W. Lee, D. Han, C. T. Morris, and B. Sarlioglu, "Highfrequency GaN HEMTs based point-of-load synchronous buck converter with zero-voltage switching," J. Power Electron., Vol. 17, No. 3, pp. 601-609, May 2017. https://doi.org/10.6113/JPE.2017.17.3.601
  18. N. Shafiei, M. Ordonez, M. Craciun, C. Botting, and M. Edington, "Burst mode elimination in high-power LLC resonant battery charger for electric vehicles," IEEE Trans. Power Electron., Vol. 31, No. 2, pp. 1173-1188, Feb. 2016. https://doi.org/10.1109/TPEL.2015.2420573
  19. J. H. Kim, C. E. Kim, J. K. Kim, J. B. Lee, and G. W. Moon, "Analysis on load-adaptive phase-shift control for high efficiency full-bridge LLC resonant converter under light-load conditions," IEEE Trans. Power Electron., Vol. 31, No. 7, pp. 4942-4955, Jul. 2016. https://doi.org/10.1109/TPEL.2015.2462077
  20. J. Jang, S. K. Pidaparthy, and B. Choi, "Current mode control for LLC series resonant DC-to-DC converters," Energies, Vol. 8, No. 6, pp. 6098-6113, Jun. 2015. https://doi.org/10.3390/en8066098
  21. M. T. Outeiro, G. Buja, and D. Czarkowski, "Resonant power converters: an overview with multiple elements in the resonant tank network," IEEE Ind. Electron. Mag., Vol. 10, No. 2, pp. 21-45, Jun. 2016. https://doi.org/10.1109/MIE.2016.2549981
  22. H. Hu, X. Fang, F. Chen, Z. J. Shen, and I. Batarseh, "A modified high-efficiency LLC converter with two transformers for wide input-voltage range applications," IEEE Trans. Power Electron., Vol. 28, No. 4, pp. 1946-1960, Jul. 2013. https://doi.org/10.1109/TPEL.2012.2201959
  23. Z. Liang, R. Guo, J. Li, and A. Q. Huang, "A high-efficiency PV module-integrated DC/DC converter for PV energy harvest in FREEDM systems," IEEE Trans. on Power Electron., Vol. 26, No. 3, pp. 897-909, Mar. 2011. https://doi.org/10.1109/TPEL.2011.2107581
  24. C. C. Hua, Y. H. Fang, and C. W. Lin, "LLC resonant converter for electric vehicle battery chargers," IET Power Electron., Vol. 9, No. 12, pp. 2369-2376, Jul. 2016. https://doi.org/10.1049/iet-pel.2016.0066
  25. Y. Du and A. K. S. Bhat, "Analysis and design of a high-frequency isolated dual-tank LCL resonant AC-DC converter," IEEE Trans. Ind. Appl., Vol. 52, No. 2, pp. 1566-1576, Mar./Apr. 2016. https://doi.org/10.1109/TIA.2015.2487438
  26. C. Wang, L. Yang, Y. Wang, and B. Chen, "A 1kW CLTCL resonant DC-DC converter with restricted switching loss and broadened voltage range," IEEE Trans. Power Electron., to be published.
  27. H Wu, X. Zhan, and Y. Xin, "Interleaved LLC resonant converter with hybrid rectifier and variable-frequency plus phase-shift control for wide output voltage range applications," IEEE Trans. Power Electron., Vol. 32, No. 6, pp. 4246-4257, Jun. 2017. https://doi.org/10.1109/TPEL.2016.2602545
  28. J. H. Jung, H. S. Kim, M. H. Ryu, and J. W. Baek, "Design methodology of bidirectional CLLC resonant converter for high-frequency isolation of DC distribution systems," IEEE Trans. Power Electron., Vol. 28, No. 4, pp. 1741-1755, Apr. 2013. https://doi.org/10.1109/TPEL.2012.2213346
  29. Y. Wang, Y. Guan, D. Xu, and W. Wang, "A CLCL resonant DC/DC converter for two-stage LED driver system," IEEE Trans. Ind. Electron., Vol. 63, No. 5, pp. 2883-2891, May 2016. https://doi.org/10.1109/TIE.2015.2511161
  30. X. Qu, S. C. Wong, and C. K. Tse, "An improved LCLC current-source-output multistring LED driver with capacitive current balancing," IEEE Trans. Power Electron., Vol. 30, No. 10, pp. 5783-5791, Oct. 2015. https://doi.org/10.1109/TPEL.2014.2377244
  31. J. H. Cheng and A. F. Witulski, "Analytic solutions for LLCC parallel resonant converter simplify use of two- and three-element converters," IEEE Trans. Power Electron., Vol. 13, No. 2, pp. 235-243, Mar. 1998. https://doi.org/10.1109/63.662828
  32. D. Fu, F. C. Lee, Y. Liu, and M. Xu, "Novel multi-element resonant converters for front-end dc/dc converters," in Proceedings of the IEEE Power Electronics Specialists Conference, pp. 250-256, 2008.
  33. J. Koscelnik, M. Prazenica, M. Frivaldsky, and S. Ondirko, "Design and simulation of multi-element resonant LCTLC converter with HF transformer," in Proceedings of the ELEKTRO, pp. 307-311, 2014.
  34. T. Mishima, H. Mizutani, and M. Nakaoka, "Experimental evaluations of a five-element multi-resonant dc-dc converter with an improved PFM control range," in Proceedings of the IEEE International Conference Power Electronics and Drive Systems, pp. 147-152, 2013.
  35. H. Wu, X. Jin, H. Hu, and Y. Xing, "Multielement resonant converters with a notch filter on secondary side," IEEE Trans. Power Electron., Vol. 31, No. 6, pp. 3999-4004, Jun. 2016. https://doi.org/10.1109/TPEL.2015.2507263
  36. D. Huang, F. C. Lee, and D. Fu, "Classification and selection methodology for multi-element resonant converters," in Proceedings of the 26th Annual IEEE Applied Power Electronics Conference and Exposition, pp. 558-565, 2011.