• Title/Summary/Keyword: DC-DC converter CCM

Search Result 56, Processing Time 0.018 seconds

Modeling and Analysis of Active-Clamp, Full-Bridge Boost Converter (능동 클램프 풀브릿지 부스트 컨버터에 대한 모델링 및 분석)

  • Kim Marn-Go
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.169-176
    • /
    • 2005
  • In this paper, a DC and small-signal AC modeling for the active-clamp, ful1-bridge boost converter is described. Based on the operation principle, the ac part of the converter can be replaced by a dc counterpart. Then, a conceptual equivalent circuit is derived by rearranging the switches. The equivalent circuit for this converter consists of CCM(Continuous conduction mode) boost and DCM(Discontinuous conduction mode) buck converter. The analyses for the equivalent CCM boost and DCM buck converter are done using the model of PWM switch. The theoretical modeling results are confirmed through experiment or SIMPLIS simulation.

The Discontinuous Conduction Mode(DCM) Modeling of DC/DC Converter and Critical Characteristic using Average Model of Switch (스위치 평균 모델을 이용한 DC/DC 컨버터의 전류불연속모드 모델링과 임계특성에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.34-43
    • /
    • 2008
  • The state-space average model is extended to buck-boost, and buck-boost topology switching mode DC/DC converters and modified to have higher precision without increment of computation. The modified model is used in continuous conduction mode(CCM) switching DC/DC converters and some significant conclusions are derived. This paper discusses the discontinuous conduction mode(DCM) modeling of DC/DC converter and critical characteristic using average model of switch. Average model of switch approach is expended to the modeling of boundary conduction mode DC/DC converters that operate at the boundary between continuous conduction mode(CCM) and discontinuous conduction mode(DCM). Frequency responses predicted by the average model of switch are verified by simulation and experiment. A prototype featuring 15[V] input voltage, 24[V] output voltage, and 24[W] output power using MOSFET.

Synchronous Bidirectional DC-DC Converter Applying Soft-Switching Technique (소프트 스위칭 기법을 적용한 싱크로너스 양방향 DC-DC 컨버터)

  • Lee, Dong-Gyu;Park, Nam-Ju;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.311-318
    • /
    • 2008
  • This paper proposes synchronous bidirectional DC-DC converter applying soft-switching technique. The proposed converter integrates two advantages which are conduction loss minimization and switching loss elimination by applying interleaved synchronous buck and ZVT-cell with a single resonant inductor. ZVS is guaranteed for wide load range in CCM(Continuous Conduction Mode) as well as wide output voltage range by current injection method. Also, reverse recovery effects of body diode can be minimized. In addition, it is possible to significantly reduce diode drop voltage occurred during dead time of conventional synchronous buck converter. The validity of the proposed converter is verified through experimental results.

A Cross Regulation Analysis for Single-Inductor Dual-Output CCM Buck Converters

  • Wang, Yao;Xu, Jianping;Zhou, Guohua
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1802-1812
    • /
    • 2016
  • Cross regulation is a key technical issue of single-inductor multiple-output (SIMO) DC-DC converters. This paper investigates the cross regulation in single-inductor dual-output (SIDO) Buck converters with continuous conduction mode (CCM) operation. The expressions of the DC voltage gain, control to the output transfer function, cross regulation transfer function, cross coupled transfer function and impedance transfer function of the converter are presented by the time averaging equivalent circuit approach. A small signal model of a SIDO CCM Buck converter is built to analyze this cross regulation. The laws of cross regulation with respect to various load conditions are investigated. Simulation and experiment results verify the theoretical analysis. This study will be helpful for converter design to reduce the cross regulation. In addition, a control strategy to reduce cross regulation is performed.

Analysis, Design, and Implementation of a Single-Phase Power-Factor Corrected AC-DC Zeta Converter with High Frequency Isolation

  • Singh, Bhim;Agrawal, Mahima;Dwivedi, Sanjeet
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.243-253
    • /
    • 2008
  • This paper deals with the analysis, design, and implementation of a single phase AC-DC Zeta converter with high frequency transformer isolation and power factor correction(PFC) in two modes of operation, discontinuous current mode of operation(DCM), and continuous current mode of operation(CCM). A Digital Signal Processor(DSP) based implementation is carried out for validation of the Zeta converter developed design in discontinuous mode of operation. A comparison of both modes of operation is presented for a 1kW power rating from the point of view of steady state and dynamic behavior, power quality, simplicity, control technique, device rating, and converter size. The experimental results of a developed prototype of Zeta converter are presented for validation of the developed design. It is observed that CCM is most suitable for higher power applications where it requires some complex control and sensing of the additional variables.

A Study on PFC AC-DC Converter of High Efficiency added in Electric Isolation (절연형 고효율 PFC AC-DC 컨버터에 관한 연구)

  • Kwak, Dong-Kurl;Kim, Sang-Roan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1349-1355
    • /
    • 2009
  • This paper is studied on a novel power factor correction (PFC) AC-DC converter of high efficiency by soft switching technique. The input current waveform in the proposed converter is got to be a sinusoidal form composed of many a discontinuous pulse in proportion to the magnitude of a ac input voltage under the constant switching frequency. Therefore, the input power factor is nearly unity and the control method is simple. The proposed converter adding an electric isolation operates with a discontinuous current mode (DCM) of the reactor in order to obtain some merits of simpler control, such as fixed switching frequency, without synchronization control circuit used in continuous current mode (CCM). To achieve the soft switching (ZCS or ZVS) of control devices, the converter is constructed with a new loss-less snubber for a partial resonant circuit. It is that the switching losses are very low and the efficiency of the converter is high, Particularly, the stored energy in a loss-less snubber capacitor recovers into input side and increases input current from a resonant operation. The result is that the input power factor of the proposed converter is higher than that of a conventional PFC converter. This paper deals mainly with the circuit operations, theoretical, simulated and experimental results of the proposed PFC AC-DC converter in comparison with a conventional PFC AC-DC converter.

Analysis and Implementation of a New Single Switch, High Voltage Gain DC-DC Converter with a Wide CCM Operation Range and Reduced Components Voltage Stress

  • Honarjoo, Babak;Madani, Seyed M.;Niroomand, Mehdi;Adib, Ehsan
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.11-22
    • /
    • 2018
  • This paper presents a single switch, high step-up, non-isolated dc-dc converter suitable for renewable energy applications. The proposed converter is composed of a coupled inductor, a passive clamp circuit, a switched capacitor and voltage lift circuits. The passive clamp recovers the leakage inductance energy of the coupled inductor and limits the voltage spike on the switch. The configuration of the passive clamp and switched capacitor circuit increases the voltage gain. A wide continuous conduction mode (CCM) operation range, a low turn ratio for the coupled inductor, low voltage stress on the switch, switch turn on under almost zero current switching (ZCS), low voltage stress on the diodes, leakage inductance energy recovery, high efficiency and a high voltage gain without a large duty cycle are the benefits of this converter. The steady state operation of the converter in the continuous conduction mode (CCM) and discontinuous conduction mode (DCM) is discussed and analyzed. A 200W prototype converter with a 28V input and a 380V output voltage is implemented and tested to verify the theoretical analysis.

The Study of Ripple Reduction of the PFC CCM Flyback Converter without Electrolytic Capacitor for LED Lightings using LC Resonant Filter (LC 공진 필터를 이용한 전해 커패시터 없는 LED 구동용 PFC CCM 플라이백 컨버터의 출력 전류 리플 저감에 관한 연구)

  • KIm, Choon-Tack;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.601-610
    • /
    • 2016
  • The light-emitting diode (LED) has been used in a variety of industrial fields and for general 0lighting purposes on account of its high efficiency, low power consumption and long lifespan. The LED is driven by direct current; therefore, an AC/DC converter is typically required for its use. An electrolytic capacitor is generally used for stabilizing DC voltage during use of the AC/DC converter. However, this capacitor has a short lifespan, which makes it a limiting factor in LED lighting. Furthermore, LED lighting requires a dimmable control to enable energy savings and fulfil a growing consumer demand. In this paper, the dimmable single-stage power factor correction (PFC) continuous conduction mode (CCM) flyback converter that employs no electrolytic capacitor is presented. The LC resonant filter is alternatively applied to reduce the 120[Hz] ripple on the output. And the optimum value of the LC resonant filter parameters considering both efficient and performance is analysed. Simulation and experimental results verify the satisfactory operation of the converter.

The DC/DC converter modeling using average model of switch and critical characterist (스위치 평균 모델을 이용한 DC/DC 컨버터 모델링 및 임계특성에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.129-133
    • /
    • 2005
  • This paper discusses DC/DC converter modeling using average model of switch and critical characterist. Average model of switch approach is expended to the modeling of boundary conduction mode DC/DC converters that operate at the boundary between Continuous Conduction Mode(CCM) and Discontinuous Conduction Mode(DCM). Frequency responses predicted by the average model of switch are verified by simulation and experiment.

  • PDF

Design of a CCM/DCM dual mode DC-DC Buck Converter with Capacitor Multiplier (커패시터 멀티플라이어를 갖는 CCM/DCM 이중모드 DC-DC 벅 컨버터의 설계)

  • Choi, Jin-Woong;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.21-26
    • /
    • 2016
  • This paper presents a step-down DC-DC buck converter with a CCM/DCM dual-mode function for the internal power stage of portable electronic device. The proposed converter that is operated with a high frequency of 1 MHz consists of a power stage and a control block. The power stage has a power MOS transistor, inductor, capacitor, and feedback resistors for the control loop. The control part has a pulse width modulation (PWM) block, error amplifier, ramp generator, and oscillator. In this paper, an external capacitor for compensation has been replaced with a multiplier equivalent CMOS circuit for area reduction of integrated circuits. In addition, the circuit includes protection block, such as over voltage protection (OVP), under voltage lock out (UVLO), and thermal shutdown (TSD) block. The proposed circuit was designed and verified using a $0.18{\mu}m$ CMOS process parameter by Cadence Spectra circuit design program. The SPICE simulation results showed a peak efficiency of 94.8 %, a ripple voltage of 3.29 mV ripple, and a 1.8 V output voltage with supply voltages ranging from 2.7 to 3.3 V.