• 제목/요약/키워드: DC Traction power supply system

검색결과 37건 처리시간 0.035초

PWM 정류기를 적용한 직류급전시스템의 조류계산에 대한 연구 (A Study on Power Flow Analysis of DC Traction Power Supply System with PWM Rectifier)

  • 김주락
    • 전기학회논문지
    • /
    • 제65권11호
    • /
    • pp.1919-1924
    • /
    • 2016
  • In general, Diode rectifier has been applied to DC traction power supply system. Diode has some characteristics which is voltage drop in inverse proportion of load because of non-controlled switch, and cannot flow a current in reverse bias. So, voltage drop occurs frequently, and regenerated power cannot use in substation. The PWM rectifier is able to control output voltage constantly to reduce voltage drop and to use regeneration power without additional inverter. This paper proposes analysis algorithm for DC traction power supply system with PWM rectifier.

전기철도의 DC급전시스템 시뮬레이터 (Simulator for DC Power Supply System in Electric Railway)

  • 정상기;홍재승
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 추계학술대회 논문집
    • /
    • pp.720-726
    • /
    • 2000
  • The advance of traction motor control technology and the complexity of the traction power supply system makes the simulation essential in determining the dimension of the traction power supply system. The conventional method, use of the simplified and/or empirical equations, becomes inadequate in optimization of the design. The simulator presented in this paper is a numerical time based simulator running on a PC. The input to the simulator includes the track data, the train characteristic, network data and operating data. Basically the simulator conducts train running simulation and loadflow study repeatedly. The principle algorithms and its output is discussed in the paper.

  • PDF

DC 급전계통 선택차단형 통합보호계전기 보호요소 IEC 61850 Logical Node 설계 (Design of IEC 61850 Logical Nodes for Modeling Protective Elements of Selective-Breaking Integrated Protective Relay for DC Traction Power Supply System)

  • 정태영;윤준석;김인웅;안태풍;정호성;김진호
    • 전기학회논문지
    • /
    • 제61권3호
    • /
    • pp.491-496
    • /
    • 2012
  • There are several protective relays used to protect DC traction power supply system for DC railway. These relays, however, are made by different manufactures and they have different ways for their operations. Therefore, there are difficulties for cooperation between the devices or the devices and an upper system. In order to increase interoperability and stability of the system composed of devices made by different manufactures, IEC 61850 international standards are applied to design logical nodes for modeling protective elements used in protective relays.

직류 전기철도 시스템의 변전소 설계 및 평가 (Design and Assessment of DC Traction Power Supply System for Light Rail Transit)

  • 백병산;문종필;최준호;김재철
    • 조명전기설비학회논문지
    • /
    • 제20권4호
    • /
    • pp.86-97
    • /
    • 2006
  • 전기철도 급전시스템의 설계와 평가에 관련하여 어려운 점은 고려해야 할 요소들이 많고, 시스템적 접근이 요구되나 단편적인 논문과 엔지니어링 측면의 접근이 대부분이다. 본 논문에서는 전기철도 시스템 중 국내외에서 최근 활발히 추진되고 있는 경량전철을 위한 직류 급전시스템의 설계 및 그의 적정성을 평가하는 기법을 체계화하였다. 먼저, 급전 시스템의 구성요소인 급전 변전소와 부하인 차량과 그리고 전력선을 포함한 전체 시스템의 특성파악하고 분석하였다. 실제 계통과 동일하게 모델링하기 위하여 축약 및 등가화를 하였으며, 등가화한 시스템을 해석하기 위한 방안으로 노드방정식과 반복접근법을 적용하였으며, 이를 체계화하여 모의절차, 평가 및 설계방법을 제시하였다. 제시한 알고리즘 및 설계절차에 따라 프로그램을 개발하였으며 사례연구를 통하여 그 유효성을 입증하였다.

회생차량을 포함한 급전시스템 해석 알고리즘 (The Computer Algorithm for DC Traction Power Supply System Analysis Including Regenerative Braking Vehicles)

  • 정상기;이승재
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권11호
    • /
    • pp.639-646
    • /
    • 2003
  • Nowadays traction motors in the urban rail transit vehicle are controlled by VVVF inverter and have capability of regenerative braking. The algorithms to deal with the regenerating vehicle in simulation for the DC traction power supply is introduced in this paper. Substations have to be separated from the system to represent reverse biased rectifiers in substations. The model of the trains in regenerative braking has to be changed from the ideal current source to the constant voltage source since the train input voltage has to be controlled below the certain train maximum voltage. Some mismatches are unevitable because the constraint of the regenerated power can not be imposed with the constant voltage source. The mismatches represent the unused regenerated power. A computer program is developed to verify the validity of the algorithm. The test run result shows the program behaves as it is expected and proves the algorithm's validity.

도시철도의 DC급전시스템 해석 알고리즘 (Computer Algorithm for the Loadflow of the DC Traction Power Supply System)

  • 정상기;홍재승
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 춘계학술대회 논문집
    • /
    • pp.78-85
    • /
    • 2000
  • Computer algorithms for the loadflow of the DC traction power supply system are examined. Algorithms to solve the nodal equation are reviewed and the two iterative methods to solve the nonlinear nature of the loadflow are analyzed and tested, which are so called conductance matrix method and current vector iterative mettled. The result of the analysis tells that the current vector iterative method makes faster convergency and needs less computing time, and it is verified by the test running of the programs based on each of the iterative methods.

  • PDF

PWM컨버터를 적용한 경전철 전력공급시스템에 관한 연구 (A Study on DC Traction Power Supply System Using PWM Converter)

  • 김주락;박창릉;박기준;김주욱
    • 한국전기전자재료학회논문지
    • /
    • 제29권4호
    • /
    • pp.250-254
    • /
    • 2016
  • Currently, power conversion system which converts AC to DC Power is applied in domestic urban railway. The diode rectifier is used in most of them. However the diode rectifier can not control the output voltage and can not regenerate power as well. On the other hand, PWM (pulse width modulation) converter using IGBT (isolated gate bipolar transistor) can control output voltage, allowing it to reduce the output voltage drop. Moreover the Bi-directional conduction regenerates power which does not require additional device for power regeneration control. This paper compared the simulation results for the DC power supply system on both the diode rectifier and the PWM converter. Under the same load condition, simulation circuit for each power supply system was constructed with the PSIM (performance simulation and modeling tool) software. The load condition was set according to the resistance value of the currently operating impedance of light rail line, and the line impedance was set according to the distance of each substations. The train was set using a passive resistor. PI (proportional integral) controller was applied to regulate the output voltage. PSIM simulation was conducted to verify that the PWM Converter was more efficient than the diode rectifier in DC Traction power supply system.

비접지 DC 급전계통에서 전류형 지락보호계전 방법 (Ground fault protective relaying schemes for DC traction power supply system)

  • 정상기;정락교;이성혁;김연수;조홍식
    • 한국철도학회논문집
    • /
    • 제7권4호
    • /
    • pp.412-417
    • /
    • 2004
  • In urban rail transit systems, ground faults in the DC traction power supply system are currently detected by the potential relay, 64P. Though it detects the fault it cannot identify the faulted region and therefore the faulted region could not be isolated properly. Therefore it could cause a power loss of the trains running on the healthy regions and the safety of the passengers in the trains could be affected adversely. Two new ground fault protective relay schemes that can identify the faulted region are presented in this paper. A current limiting device, called Device X, is newly introduced in both system, which enables large amount of ground fault current flow upon the positive line to ground fault. One type of the relaying schemes is called directional and differential ground fault protective relay which uses the current differential scheme in detecting the fault and uses the permissive signal from neighboring substation to identify the faulted region correctly. The other is called ground over current protective relay. It is similar to the ordinary over current relay but it measures the ground current at the device X not at the power feeding line, and it compares the current variation value to the ground current in Device X to identify the correct faulted line. Though both type of the relays have pros and cons and can identify the faulted region correctly, the ground over current protective relaying scheme has more advantages than the other.

서울 지하철 6호선에 대한 전력계통 시뮬레이션 (Power System Simulation in Seoul matropolitain subway Line-6 system)

  • 이태식;문영현;성수영;윤갑구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.137-139
    • /
    • 1993
  • This paper details methods used to verify the adquacy of a dc traction power supply for design in Seoul matropolitain subway Line-6 system. Examples of the approach are given for a major subway presently under construction. The performance of trains operating at maximum system design capacity is modelled using a train simulation program. Using a dc network analyser program, the maximum train operating timetable, and a model of the ac and dc electrical suppy system, the electrical performance of the entire system can be modelled over a 24-hour period. The results of this analysis are used to determime: train voltage at a level sufficient to ensure train schedules: adequacy of traction transformers, rectifier, and switchgear ratings; sizes of the overhead contact systern conductors, and ac and de feeder cables: and power and energy demands at the utility company's supply points for inital and final timetable operations.

  • PDF

도시철도 직류 비접지 급전계통에서의 선택 지락보호시스템의 성능평가 (An Evaluation of Selective Grounding Fault Protective Relaying Technique Performance on the Ungrounded DC Traction Power Supply System)

  • 정호성;김주욱;신승권;김형철;안태풍;윤준석
    • 전기학회논문지
    • /
    • 제61권12호
    • /
    • pp.1964-1969
    • /
    • 2012
  • This paper presents to verify the selective grounding fault protective relaying technique for the ungrounded DC traction power supply system. This system selectively blocks fault section when grounding fault occurred. In order to perform this verification, field test facilities have been installed on Oesam substation and Worldcup-Stadium substation, and field test process has been suggested. Also, selective grounding fault protective relaying components and rail voltage reduction device have been tested with the various trial examinations. In order to compare and evaluate performance of the selective grounding fault protective relaying function, field test system was modeled and the system fault simulation results were compared and evaluated with the field test result. Performance of selective grounding fault protective relaying function was evaluated with the above-mentioned process, and the fact that the system recognizes fault section irrespective of insulation between rail and ground and fault resistance from grounding fault.