• Title/Summary/Keyword: DC Link

Search Result 1,020, Processing Time 0.028 seconds

The study on DC-link Film Capacitor in 3 Phase Inverter System for the Consideration of Frequency Response (3상 인버터 시스템에서 주파수 특성을 고려한 필름 콘덴서의 DC-link 적용 방법에 관한 연구)

  • Park, Hyun-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.117-122
    • /
    • 2018
  • A large-capacity three-phase system air conditioner recently includes an inverter circuit to reduce power consumption. The inverter circuit uses a DC voltage that comes from DC-link power capacitor with the function of rectifying, which means AC voltage to DC voltage using a diode. An electrolytic capacitor is generally used to satisfy the voltage ripple and current ripple conditions of a DC-link power capacitor used for rectifying. Reducing the capacitance of the capacitor decreases the size, weight, and cost of the circuit. This paper proposes an algorithm to reduce the input ripple current by combining the minimum point estimation phase locked loop (PLL) phase control and the average voltage d axis current control technique. When this algorithm was used, the input ripple current decreased by almost 90%. The current ripple of the DC-link capacitor decreased due to the decrease in input ripple current. The capacitor capacity can be reduced but the electrolytic capacitor has a heat generation problem and life-time limitations because of its large equivalent series resistance (ESR). This paper proposes a method to select a film capacitor considering the current ripple at DC-link stage instead of an electrolytic capacitor. The capacitance was selected considering the voltage limitation, RMS (Root Mean Square) current capacity, and RMS current frequency analysis. A $1680{\mu}F$ electrolytic capacitor can be reduced to a $20{\mu}F$ film capacitor, which has the benefit of size, weight and cost. These results were verified by motor operation.

An Improved Voltage Control Scheme for DC-Link Voltage Balancing in a Four-Level Inverter (4-레벨 인버터의 DC-링크 전압 균형을 위한 향상된 전압 제어 기법)

  • Kim, Rae-Yeong;Lee, Yo-Han;Choe, Chang-Ho;Hyeon, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.10
    • /
    • pp.544-554
    • /
    • 1999
  • Multi-level inverters are now receiving widespread interest form the industrial drives for high power variable speed applications. Especially, for the high power variable speed applications, a diode clamped multi-level inverter has been widely used. However, it has the inherent problem that the voltage of the link capacitors fluctuates. This paper describes a voltage control scheme effectively to suppress the DC-link potential fluctuation for a diode clamped four-level inverter. The current to flow from/into the each link capacitor is analyzed and the operation limit is obtained when a conventional SVPWM is used. To overcome the operation limit, a modified carrier-based SVPWM is proposed. Various simulation and experiment results are presented to verify the proposed voltage control scheme for DC-link voltage balancing.

  • PDF

A Novel SVPWM Strategy Considering DC-link Balancing for a Multi-level Voltage Source Inverter

  • Kim, Rae-Young;Lee, Yo-Han;Hyun, Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.159-164
    • /
    • 1998
  • This paper proposes a SVPWM (space vector pulse width modulation) strategy for a multi-level voltage source inverter. This strategy is easily implemented as SPWM (sinusoidal pulse width modulation) and has the same DC-link voltage utilization as general SVPWM. The method to keep the voltage balancing of DC-link also is proposed by the analysis model of DC-link voltage fluctuation. The usefulness of the proposed SVPWM is verified through the simulation.

  • PDF

Analysis of Dimming Characteristics for Electrodeless Fluorescent Lamps by controlling the DC-Link Voltage (DC-Link 전압가변에 의한 무전극 램프 조광제어 특성 분석)

  • Park, Chong-Yeun;Sin, Dong-Seok;Lim, Byoung-Noh
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1092-1093
    • /
    • 2007
  • 본 논문은 DC-Link 전압가변에 의한 전구형 무전극 램프의 조광제어 특성을 분석한 결과 전력이 $20%{\sim}100%$ 제어 가능함을 실험적으로 밝혔다. DC-Link 전압가변은 벅 컨버터의 듀티를 제어하였으며, 전구형 무전극 램프의 조광제어 특성을 분석하였다.

  • PDF

Low switching techniques considering the output harmonics for the adjustable DC link system (출력 고조파 특성을 고려한 가변 DC link 시스템의 저스위칭 기법)

  • Choi, Hyeon-gyu;Ha, Jung-Ik
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.71-72
    • /
    • 2016
  • 전동기의 운전 영역을 확대하기 위해 부스트 컨버터를 이용하여 가변 DC link를 합성한다. 가변 DC link 구간에서는 스위칭 손실이 증가하기 때문에 스위칭 횟수를 줄이는 전략이 필요하다. 제안하는 Edge-Cutting Pulse Width Modulation(ECPWM)을 통해 스위칭 손실을 1/3로 절감하고, 최적의 고조파 특성을 갖는 직류단 전압의 크기를 결정한다. 이를 이용해 가변 직류단 전압 구간에서 인버터 손실을 감소시키며, Bolognani 과변조 방법을 적용해 안정적인 6-스텝으로의 절환까지 고려한다.

  • PDF

Reactive Power Control of Single-Phase Reactive Power Compensator for Distribution Line (배전선로용 단상 무효전력 보상기의 무효전력제어)

  • Sim, Woosik;Jo, Jongmin;Kim, Youngroc;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.2
    • /
    • pp.73-78
    • /
    • 2020
  • In this study, a novel reactive power control scheme is proposed to supply stable reactive power to the distribution line by compensating a ripple voltage of DC link. In a single-phase system, a magnitude of second harmonic is inevitably generated in the DC link voltage, and this phenomenon is further increased when the capacity of DC link capacitor decreases. Reactive power control was performed by controlling the d-axis current in the virtual synchronous reference frame, and the voltage control for maintaining the DC link voltage was implemented through the q-axis current control. The proposed method for compensating the ripple voltage was classified into three parts, which consist of the extraction unit of DC link voltage, high pass filter (HPF), and time delay unit. HPF removes an offset component of DC link voltage extracted from integral, and a time delay unit compensates the phase leading effect due to the HPF. The compensated DC voltage is used as feedback component of voltage control loop to supply stable reactive power. The performance of the proposed algorithm was verified through simulation and experiments. At DC link capacitance of 375 uF, the magnitude of ripple voltage decreased to 8 Vpp from 74 Vpp in the voltage control loop, and the total harmonic distortion of the current was improved.

Spectral Analysis of DC Link Ripple Currents in Three-Phase AC/DC/AC PWM Converters (3상 AC/DC/AC PWM 컨버터의 직류링크 리플전류의 주파수 영역 해석)

  • 이동춘;박영욱;석줄기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.244-252
    • /
    • 2002
  • In this paper, do link ripple currents for three-phase ac/dc/ac PWM converters feeding adjustable speed ac machine drives are analysed in a frequency domain. The expression of the harmonic currents is developed by using switching functions of the converter and exponential courier series expansion. The effect of the displacement angle between the switching Periods of line-side converters and motor-side inverters on the dc link ripple currents is Investigated. Also, the influence of asynchronization of PWM is observed. The result of analysis is compared with frequency spectrum which results from PSIM simulation. The proposed analysis technique is useful to understand the principles of P% and to derive an equivalent model of the dc link capacitors in a high frequency range.

An Optimal Damping Control Algorithm of Direct Two-level Inverter for Miniaturization and Weight Reduction of Auxiliary Power Supply on Railway Vehicle

  • Lee, Chang-hee;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2335-2343
    • /
    • 2018
  • This paper proposes an optimal damping control algorithm of the DTI (Direct Two-level Inverter) to miniaturize and reduce the weight of auxiliary power supply for railway vehicles. The conventional auxiliary power supply for railway vehicles uses a DC-DC converter to maintain the inverter input power from the line voltage smoothly. The proposed topology does not use a DC-DC converter for reducing of manufacturing and maintenance costs. It also proposes a DTI topology removed damping resistors that generate ground signal noise in a certain period. At this time, a resonance phenomenon of DC-link voltage occurs due to variation of the inductive load, and a method of controlling the resonance phenomenon of DC-link voltage is required. In order to suppress the resonance phenomenon of the DC-link voltage, at a point before resonance occurs, this paper introduces an algorithm to suppress the resonance phenomenon of DC-link voltage by compensating the resonance component of the q axis voltage of the synchronous reference frame. The proposed algorithm verifies the effect through simulation and experiment.

DC-link Voltage Control of HVDC for Offshore Wind Farm using Improved De-loading Method (개선된 De-loading기법을 이용한 해상풍력 연계용 HVDC의 DC 전압의 제어방안)

  • Huh, Jae-Sun;Moon, Won-Sik;Park, Sang-In;Kim, Doo-Hee;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.399-404
    • /
    • 2015
  • This paper presents the DC voltage control method in DC link of High Voltage Direct Current(HVDC) for an offshore wind farm in Low Voltage Ride Through(LVRT) situation. Wind generators in an offshore wind farm are connected to onshore network via HVDC transmission. Due to LVRT control of grid side inverter in HVDC, power imbalancing in DC link is generated and this consequentially causes rising of DC voltage. A de-loading scheme is one of the method to protect the wind power system DC link capacitors from over voltage. But the flaw of this method is slow control response time and that it needs long recovery time to pre-fault condition after fault clear. Thus, this paper proposes improved de-loading method and we analyze control performance for DC voltage in LVRT control of HVDC for an offshore wind farm.

A Simple Control Strategy for Balancing the DC-link Voltage of Neutral-Point-Clamped Inverters at low modulation index (Neutral-Point-Clamped 인버터의 저 변조지수에서 DC 링크 전압 균형을 위한 간단한 컨트롤 기법)

  • Ma C.S.;Kim T.J.;Kang D.W.;Hyun D.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.560-564
    • /
    • 2003
  • This paper proposes a simple control strategy based on the discontinuous PWM(DPWM) to balance the DC-link voltage of three-level Neutral-Point-Clamped(WPC) inverters at low modulation index. New DPWM methods in multi-level inverter are also introduced. The proposed DPWM method changes the path and duration to flow the neutral point current out of or into neutral point of the DC-link and it makes the overall fluctuation of the DC-link voltage zero during a sampling time of reference voltage vector. Therefore, the voltage of the DC-link can be balanced fairly well and also the voltage ripple of the DC-link is reduced significantly. Moreover, comparing with conventional methods, the proposed strategy is very simple. The validity of the proposed DPWM method is verified by experiment

  • PDF