• Title/Summary/Keyword: DAC (Digital-to-Analog Converter)

Search Result 115, Processing Time 0.025 seconds

Fuzzy Logic PID controller based on FPGA

  • Tipsuwanporn, V.;Runghimmawan, T.;Krongratana, V.;Suesut, T.;Jitnaknan, P.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1066-1070
    • /
    • 2003
  • Recently technologies have created new principle and theory but the PID control system remains its popularity as the PID controller contains simple structure, including maintenance and parameter adjustment being so simple. Thus, this paper proposes auto tune PID by fuzzy logic controller based on FPGA which to achieve real time and small size circuit board. The digital PID controller design to consist of analog to digital converter which use chip TDA8763AM/3 (10 bit high-speed low power ADC), digital to analog converter which use two chip DAC08 (8 bit digital to analog converters) and fuzzy logic tune digital PID processor embedded on chip FPGA XC2S50-5tq-144. The digital PID processor was designed by fundamental PID equation which architectures including multiplier, adder, subtracter and some other logic gate. The fuzzy logic tune digital PID was designed by look up table (LUT) method which data storage into ROM refer from trial and error process. The digital PID processor verified behavior by the application program ModelSimXE. The result of simulation when input is units step and vary controller gain ($K_p$, $K_i$ and $K_d$) are similarity with theory of PID and maximum execution time is 150 ns/action at frequency are 30 MHz. The fuzzy logic tune digital PID controller based on FPGA was verified by control model of level control system which can control level into model are correctly and rapidly. Finally, this design use small size circuit board and very faster than computer and microcontroller.

  • PDF

Design of a Small Area 12-bit 300MSPS CMOS D/A Converter for Display Systems (디스플레이 시스템을 위한 소면적 12-bit 300MSPS CMOS D/A 변환기의 설계)

  • Shin, Seung-Chul;Moon, Jun-Ho;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.4
    • /
    • pp.1-9
    • /
    • 2009
  • In this paper, a small area 12-bit 300MSPS CMOS Digital-to-Analog Converter(DAC) is proposed for display systems. The architecture of the DAC is based on a current steering 6+6 segmented type, which reduces non-linearity error and other secondary effects. In order to improve the linearity and glitch noise, an analog current cell using monitoring bias circuit is designed. For the purpose of reducing chip area and power dissipation, furthermore, a noble self-clocked switching logic is proposed. To verify the performance, it is fabricated with $0.13{\mu}m$ thick-gate 1-poly 6-metal N-well Samsung CMOS technology. The effective chip area is $0.26mm^2$ ($510{\mu}m{\times}510{\mu}m$) with 100mW power consumption. The measured INL (Integrated Non Linearity) and DNL (Differential Non Linearity) are within ${\pm}3LSB$ and ${\pm}1LSB$, respectively. The measured SFDR is about 70dB, when the input frequency is 15MHz at 300MHz clock frequency.

A 12-b Asynchronous SAR Type ADC for Bio Signal Detection

  • Lim, Shin-Il;Kim, Jin Woo;Yoon, Kwang-Sub;Lee, Sangmin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.2
    • /
    • pp.108-113
    • /
    • 2013
  • This paper describes a low power asynchronous successive approximation register (SAR) type 12b analog-to-digital converter (ADC) for biomedical applications in a 0.35 ${\mu}m$ CMOS technology. The digital-to-analog converter (DAC) uses a capacitive split-arrays consisting of 6-b main array, an attenuation capacitor C and a 5-b sub array for low power consumption and small die area. Moreover, splitting the MSB capacitor into sub-capacitors and an asynchronous SAR reduce power consumption. The measurement results show that the proposed ADC achieved the SNDR of 68.32 dB, the SFDR of 79 dB, and the ENOB (effective number of bits) of 11.05 bits. The measured INL and DNL were 1.9LSB and 1.5LSB, respectively. The power consumption including all the digital circuits is 6.7 ${\mu}W$ at the sampling frequency of 100 KHz under 3.3 V supply voltage and the FoM (figure of merit) is 49 fJ/conversion-step.

A Technology on the GPS CRPA Pattern Control Using the I/Q Vector Modulator (I/Q 벡터 모듈레이터를 이용한 GPS CRPA 패턴 제어기술)

  • Kim, Jun-O;Bae, Jun-Seung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.48-55
    • /
    • 2006
  • This paper describes the antenna based GPS anti-jamming technology called CRPA(Controlled Reception Pattern Antenna), which used $2{\times}2$ array elements. In this system, the main functions are the antenna complex weight control and the GPS digital I/Q VM(Vector Modulator). To update the VM's I/Q complex weights, the PC based DAC(Digital to Analog Converter) module was also used and the two analog output voltages were applied to the $2{\times}2$ array elements to synthesize the null pattern. In the study, we also simulated the $2{\times}2$ GPS array null patterns to compare the null depth with experimental results. The VM was also modified at the frequency of 1.575GHz for the GPS L1 and controlled by the PC based VM software.

Efficient Signature-Driven Self-Test for Differential Mixed-Signal Circuits

  • Kim, Byoungho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.713-718
    • /
    • 2016
  • Predicting precise specifications of differential mixed-signal circuits is a difficult problem, because analytically derived correlation between process variations and conventional specifications exhibits the limited prediction accuracy due to the phase unbalance, for most self-tests. This paper proposes an efficient prediction technique to provide accurate specifications of differential mixed-signal circuits in a system-on-chip (SoC) based on a nonlinear statistical nonlinear regression technique. A spectrally pure sinusoidal signal is applied to a differential DUT, and its output is fed into another differential DUT through a weighting circuitry in the loopback configuration. The weighting circuitry, which is employed from the previous work [3], efficiently produces different weights on the harmonics of the loopback responses, i.e., the signatures. The correlation models, which map the signatures to the conventional specifications, are built based on the statistical nonlinear regression technique, in order to predict accurate nonlinearities of individual DUTs. In production testing, once the efficient signatures are measured, and plugged into the obtained correlation models, the harmonic coefficients of DUTs are readily identified. This work provides a practical test solution to overcome the serious test issue of differential mixed-signal circuits; the low accuracy of analytically derived model is much lower by the errors from the unbalance. Hardware measurement results showed less than 1.0 dB of the prediction error, validating that this approach can be used as production test.

Low Power ADC Design for Mixed Signal Convolutional Neural Network Accelerator (혼성신호 컨볼루션 뉴럴 네트워크 가속기를 위한 저전력 ADC설계)

  • Lee, Jung Yeon;Asghar, Malik Summair;Arslan, Saad;Kim, HyungWon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1627-1634
    • /
    • 2021
  • This paper introduces a low-power compact ADC circuit for analog Convolutional filter for low-power neural network accelerator SOC. While convolutional neural network accelerators can speed up the learning and inference process, they have drawback of consuming excessive power and occupying large chip area due to large number of multiply-and-accumulate operators when implemented in complex digital circuits. To overcome these drawbacks, we implemented an analog convolutional filter that consists of an analog multiply-and-accumulate arithmetic circuit along with an ADC. This paper is focused on the design optimization of a low-power 8bit SAR ADC for the analog convolutional filter accelerator We demonstrate how to minimize the capacitor-array DAC, an important component of SAR ADC, which is three times smaller than the conventional circuit. The proposed ADC has been fabricated in CMOS 65nm process. It achieves an overall size of 1355.7㎛2, power consumption of 2.6㎼ at a frequency of 100MHz, SNDR of 44.19 dB, and ENOB of 7.04bit.

A Study on the Implementation of Wideband Hybrid Quadrature Polar Transmitter Platform (광대역 하이브리드 직교 폴라 송신 플랫폼 구현에 관한 연구)

  • Chang, Sang-Hyun;Lee, Il-Kyoo;Kim, Hyung-Jung;Kang, Sang-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.1A
    • /
    • pp.28-34
    • /
    • 2011
  • In this paper, we proposed the architecture of the Hybrid Quadrature Polar transmitter which has the wideband characteristics available for the SRD(Short Range Device). First, we developed the simulation environment and carried out performance degradation analysis. Second, we considered the slewrate of the VVA(Voltage Variable Attenuator), time delay between magnitude signal and phase signal and the number of bits for DAC(Digital-to-Analog Converter) as the main performance factors. Then we obtained the minimum required values to meet the transmitting performance requirements of 3GPP standards through simulation results. Based on these results, we implemented the Wideband Hybrid Quadrature Polar transmitter platform and varified the performance requirements through practical measurement.

A 3.3V-65MHz 12BIT CMOS current-mode digital to analog converter (3.3V-65MHz 12비트 CMOS 전류구동 D/A 변환기 설계)

  • 류기홍;윤광섭
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.518-521
    • /
    • 1998
  • This paper describes a 3.3V-65MHz 12BIT CMOS current-mode DAC designed with a 8 MSB current matirx stage and a 4 LSB binary weighting stage. The linearity errors caused by a voltage drop of the ground line and a threshold voltage mismatch of transistors have been reduced by the symmetrical routing method with ground line and the tree structure bias circuit, respectively. In order to realize a low glitch energy, a cascode current switch ahs been employed. The simulation results of the designed DAC show a coversion rate of 65MHz, a powr dissipation of 71.7mW, a DNL of .+-.0.2LSB and an INL of .+-.0.8LSB with a single powr supply of 3.3V for a CMOS 0.6.mu.m n-well technology.

  • PDF

A Single-Ended ADC with Split Dual-Capacitive-Array for Multi-Channel Systems

  • Cho, Seong-Jin;Kim, Ju Eon;Shin, Dong Ho;Yoon, Dong-Hyun;Jung, Dong-Kyu;Jeon, Hong Tae;Lee, Seok;Baek, Kwang-Hyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.5
    • /
    • pp.504-510
    • /
    • 2015
  • This paper presents a power and area efficient SAR ADC for multi-channel near threshold-voltage (NTV) applications such as neural recording systems. This work proposes a split dual-capacitive-array (S-DCA) structure with shifted input range for ultra low-switching energy and architecture of multi-channel single-ended SAR ADC which employs only one comparator. In addition, the proposed ADC has the same amount of equivalent capacitance at two comparator inputs, which minimizes the kickback noise. Compared with conventional SAR ADC, this work reduces the total capacitance and switching energy by 84.8% and 91.3%, respectively.

A Design of 10bit current output Type Digital-to-Analog converter with self-Calibration Techique for high Resolution (고해상도를 위한 DAC 오차 보정법을 가진 10-비트 전류 출력형 디지털-아날로그 변환기 설계)

  • Song, Jung-Gue;Shin, Gun-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.691-698
    • /
    • 2008
  • This paper describes a 3.3V 10 bit CMOS digital-to-analog converter with a divided architecture of a 7 MSB and a 3 LSB, which uses an optimal Thermal-to-Binary Decoding method with monotonicity, glitch energy. The output stage utilizes here implements a return-to-zero circuit to obtain the dynamic performance. Most of D/A converters in decoding circuit is complicated, occupies a large chip area. For these problems, this paper describes a D/A converter using an optimal Thermal-to-Binary Decoding method. the designed D/A converter using the CMOS n-well $0.35{\mu}m$ process0. The experimental data shows that the rise/fall time, settling time, and INL/DNL are 1.90ns/2.0ns, 12.79ns, and a less than ${\pm}2.5/{\pm}0.7\;LSB$, respectively. The power dissipation of the D/A converter with a single power supply of 3.3V is about 250mW.