• Title/Summary/Keyword: D2 isotope

Search Result 221, Processing Time 0.025 seconds

Hydrochemistry and Environmental Isotope Studies of the Deep Groundwater in the Munkyeong Area (문경지역 심부지하수의 수리화학 및 환경동위원소 연구)

  • 고용권;김천수;배대석;이동익
    • Economic and Environmental Geology
    • /
    • v.33 no.6
    • /
    • pp.469-489
    • /
    • 2000
  • The hydrogeochemical and isotopic studies on deep groundwater (below a 550 m depth from the ground surface) in the Munkyeong area, Kyeongbuk province were carried out. Two types of deep groundwater (${CO_2}$-rich groundwater and alkali groundwater) occur together in the Munkywong area. ${CO_2}$-rich groundwater (Ca-${HCO_3}$ type) is characterized by low pH (5.8~6.5) and high TDS (up to 2,682 mg/L.), while alkali groundwater (Na-${HCO_3}$ type) shows a high pH (9.1~10.4) and relatively low TDS (72~116 mg/L). ${CO_2}$-rich water may have evolved by ${CO_2}$ added at depth during groundwater circulation. This process leads to the dissolution of surrounding rocks and Ca, Na, Mg, K and ${HCO_3}$ concentrations are eniched. The low $Pco_2$ ($10^{-6.4}$atm) of alkali groundwaters seems to result from the dissolution of silicate minerals without a supply of ${CO_2}$. The ${\delta}^{18}O$ and ${\delta}^D$values and tritium data indicate that two types of deep groundwater were both derived from pre-thermonuclear meteoric water and have evolved through prolonged water-rock interaction. The carbon isotope data show that dissolved carbon in the ${CO_2}$-rich water was possibly derived from deep-seated ${CO_2}$ gas, although further studies are needed. The ${\delta}^{34}S$ values of dissolved sulfate show that sulfate reduction occurred at great depths. The application of various chemical geothermometers on ${CO_2}$-rich groundwater shows that the calculated deep reservoir temperature is about 130~$l75^{\circ}C$. Based on the geological setting, water chemistry and environmental isotope data, each of the two types of deep groundwater represent distinct hydrologic and hydrogeochemical evolution at depth and their movement is controlled by the local fracture system.

  • PDF

Enrichment of Lithium Isotope by Novel Ion Exchanger Containing Azacrown Ether as Anchor Group (앵커 그룹으로서 아자크라운 에테르를 포함한 새로운 이온교환체에 의한 리튬 동위원소의 농축)

  • Kim, Dong Won;Lee, Nam-Soo;Jeong, Young Kyu;Ryu, Haiil;Kim, Chang Suk;Kim, Bong Gyun
    • Analytical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.231-234
    • /
    • 1998
  • Separation factor for $^6Li$ and $^7Li$ has been determined using ion exchange resin having 1,7,13-trioxa-4,10,16-triazacyclooctadecane ($N_3O_3$) as an anchor group. The ion exchange capacity of the $N_3O_3$ ion exchanger was 2.0 meq/g dry resin. The lighter isotope, $^6Li$, is concentrated in the fluid phase, while the heavier isotope, $^7Li$, is enriched in the resin phase. By column chromatography [0.3 cm(I.D)${\times}$30 cm (height)] using 3.0 M ammonium chloride solution as an eluent, single separation factor, ${\alpha}$, 1.018, i.e. $(^7Li/^6Li)_{resin}/(^7Li/^6Li)_{fluid}$ was obtained by the Glueckauf theory from the elution curve and isotope ratios.

  • PDF

Enrichment of Lithium Isotope by an Ion Exchange Resin Containing Azacrown Ether (아자크라운 에터를 포함한 이온교환수지에 의한 리튬 동위원소의 농축)

  • Kim, Dong Won;Chung, Yongsoon;Choi, Ki Young;Lee, Yong-Ill;Jeong, Young Kyu;Jang, Young Hun
    • Analytical Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.403-407
    • /
    • 1997
  • Separation factor for $^6Li$ and $^7Li$ have been determined using ion exchange resin having 1,7,13-trioxa-4,10,16-triazacyclooctadecane($N_3O_3$) as an anchor group. The lighter isotope, $^6Li$ is concentrated in the solution phase, while the heavior isotope, $^7Li$ is enriched in the resin phase. By Ccolumnl chromatography[0.9cm(I.D)${\times}$20cm(height)] using 2.0M ammonium chloride solution as an eluent, single separation factor, ${\alpha}$, 1.009. i.e.$(^7Li/^6Li)_{resin}$/$(^7Li/^6Li)_{solution}$ was obtained by the Glueckauf theory from the elution curve and isotope ratios.

  • PDF

Kinetics and Mechanism of the Anilinolysis of Dipropyl Chlorophosphate in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1879-1884
    • /
    • 2012
  • The kinetic studies on the reactions of dipropyl chlorophosphate (3O) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) have been carried out in acetonitrile at $55.0^{\circ}C$. The obtained deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) are primary normal ($k_H/k_D$ = 1.09-1.01) with the strongly basic anilines while secondary inverse ($k_H/k_D$ = 0.74-0.82) with the weakly basic anilines. The steric effects of the two ligands on the rates are extensively discussed for the anilinolyses of the ($R_1O$)($R_2O$)P(=O or S)Cl-type chlorophosphates and chlorothiophosphates. A concerted mechanism is proposed with a frontside nucleophilic attack involving a hydrogen-bonded four-center-type transition state for the strongly basic anilines and with a backside attack transition state for the weakly basic anilines on the basis of the DKIEs, primary normal and secondary inverse with the strongly and weakly basic anilines, respectively.

Interpretation of Origin and Methanogenic Pathways of Coalbed Gases from the Asem-Asem Basin, Southeast Kalimantan, Indonesia (인도네시아 칼리만탄 남동측에 위치하는 아셈-아셈분지 석탄층 가스의 기원과 메탄생성경로 해석)

  • Chun, Jong-Hwa;Hwang, In Gul;Lee, Wonsuk;Lee, Taehun;Kim, Yuri
    • Economic and Environmental Geology
    • /
    • v.55 no.3
    • /
    • pp.261-271
    • /
    • 2022
  • Six gas samples were collected from coal and coaly shale from core AA-1, which was acquired from the Asem-Asem Basin, southeast Kalimantan, Indonesia. These coalbed gas samples were analyzed for the molecular composition, carbon isotope (δ13CCH4, δ13CC2, and δ13CCO2), hydrogen isotope (δDCH4), hydrocarbon index (CHC), and carbon dioxide-methane index (CDMI) to document their origin and methanogenic pathways. Core AA-1 successively consists of lower clastic sedimentary rocks (Sedimentary Unit-1, SU-1) containing coal and coaly shale, and upper limestone (Sedimentary Unit-2, SU-2), unconformably underlain by serpentinized basement interpreted as part of the Cretaceous Meratus subduction complex (MSC). The coal and coaly shale (SU-1) were deposited in a marshes nearby a small-scale river. Compositions of coalbed gases show that methane ranges from 87.35 to 95.29% and ethane ranges from 3.65 to 9.97%. Carbon isotope of coalbed methane (δ13CCH4) ranges from -60.3 to -58.8‰, while hydrogen isotope (δDCH4) ranges from -252.9 to -252.1‰. Carbon isotope of coalbed ethane (δ13CC2) ranges from -32.8 to -31.2‰, carbon isotope of coalbed carbon dioxide (δ13CCO2) ranges from -8.6 to -6.2‰. The coalbed CO2 is interpreted to be an abiogenic origin based on a combination of δ13CCO2 and CDMI and could have been transported from underlying CO2 bearing MSC through faults. The methanogenic pathways of coalbed gases are interpreted to have originated from primary methyl-type fermentation and mixed with CO2 reduction, affecting thermogenic non-marine coal-type gases based on analyses of isotopic ratios and various indexes.

Talc Mineralization in the Middle Ogcheon Metamorphic Belt (II) : Poongjeon Talc Deposit (중부옥천변성대의 활석광화작용에 관한 연구 (II) : 풍전활석광상을 중심으로)

  • Park, Hee-In;Lee, In Sung;Hur, Soon Do;Shin, Dong Bok
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.543-551
    • /
    • 1997
  • Poongjeon talc deposits is emplaced in dolomite and dolomitic limestone of the Cambro-Ordovician Samtaesan Formation. Ore in Poongjeon is low grade talc and the deposit has been known as the contact metasomatic or hydrothermal replacement type related to the intrusion of late Cretaceous granite in this area. X-ray diffraction, electron microprobe analysis, fluid inclusion and stable isotope analysis were utilized to examine the mineralogy of the ore and the origin of the ore fluid. The ore from Poongjeon mine mainly consists of talc and tremolite with minor amount of illite, vermiculite, smectite, and chlorite-vermiculite mixed layer. Occurrence of ore body indicates that the talc-tremolite ore was formed through the replacement by the $SiO_2$-rich hydrothermal fluid along the bedding and dike boundaries, or contact of amphibolite and basic dike with carbonate rocks. The temperature and pressure of the ore forming fluids at the time of the talc mineralization were estimated as $350^{\circ}C$ and 400 bar, respectively, based on the heating and freezing data of the fluid inclusions in quartz from talc-tremolite veins. During the talc-tremolite formation, fluids were divided into $CO_2$-enriched fluid and $CO_2$-poor fluid from $CO_2$ immiscibility (or effervescence). Oxygen isotope values (${\delta}^{18}O$) of the talc-tremolite fall within a range between 12.2 and 12.9‰. Hydrogen isotope values(${\delta}D$) of the ore range from -60 to -85‰ and $H_2O$ contents range from 2.0 to 3.4 wt.%. ${\delta}^{18}O$ and ${\delta}D$ values of talc ore indicate that the hydrothermal fluid involved in talc-tremolite formation was of igneous origin. Oxygen and hydrogen isotopic exchange between talc ore and the surface water was negligible after talc-tremolite ore formation.

  • PDF

C/N/O/S stable isotopic and chemometric analyses for determining the geographical origin of Panax ginseng cultivated in Korea

  • Chung, Ill-Min;Kim, Jae-Kwang;Lee, Ji-Hee;An, Min-Jeong;Lee, Kyoung-Jin;Park, Sung-Kyu;Kim, Jang-Uk;Kim, Mi-Jung;Kim, Seung-Hyun
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.485-495
    • /
    • 2018
  • Background: The geographical origin of Panax ginseng Meyer, a valuable medicinal plant, is important to both ginseng producers and consumers in the context of economic profit and human health benefits. We, therefore, aimed to discriminate between the cultivation regions of ginseng using the stable isotope ratios of C, N, O, and S, which are abundant bioelements in living organisms. Methods: Six Korean ginseng cultivars (3-yr-old roots) were collected from five different regions in Korea. The C, N, O, and S stable isotope ratios in ginseng roots were measured by isotope ratio mass spectrometry, and then these isotope ratio profiles were statistically analyzed using chemometrics. Results: The various isotope ratios found in P. ginseng roots were significantly influenced by region, cultivar, and the interactions between these two factors ($p{\leq}0.001$). The variation in ${\delta}^{15}N$ and ${\delta}^{13}C$ in ginseng roots was significant for discriminating between different ginseng cultivation regions, and ${\delta}^{18}O$ and ${\delta}^{34}S$ were also affected by both altitude and proximity to coastal areas. Chemometric model results tested in this study provided discrimination between the majority of different cultivation regions. Based on the external validation, this chemometric model also showed good model performance ($R^2=0.853$ and $Q^2=0.738$). Conclusion: Our case study elucidates the variation of C, N, O, and S stable isotope ratios in ginseng root depending on cultivation region. Hence, the analysis of stable isotope ratios is a suitable tool for discrimination between the regional origins of ginseng samples from Korea, with potential application to other countries.

A study of 2-color 3-step selective photoionization for mercury atoms (수은 원자의 2-색 3-단계 선택적 광이온화 연구)

  • 노시표;한재민;정도영;차형기;이종민
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.117-122
    • /
    • 1992
  • 2-color 3-step resonance photoionization scheme has been used for selective photoionization of mercury isotopes. The levels of $6^3P_1$ and $6^1D_2$ were selected as intermediate excited levels, and the laser wavelengths used were 253.7 nm for the first excitation and 313.2 nm for the second excitation and ionization. Selective excitation for individual isotope was realized in the first excitation step with a single-longitudinal-mode (SLM) dye laser rrf ~700 MHz linewidth. For the second excitation and ionization step, a dye laser with relatively large linewidth of ~5 GHz was used. In this work the effect of laser intensities on isotope selectivity was analyzed from the mass spectra obtained in real time from the time-of-flight mass spectrometer.

  • PDF

Simultaneous Determination of C22-C26 Very Long - Chain Fatty Acids Following tert-Butyldimethylsilyl Derivatization by Stable Isotope GC- MS for the Screening of Adrenoleucodystrophy

  • Yoon, Hye-Ran
    • Biomolecules & Therapeutics
    • /
    • v.15 no.4
    • /
    • pp.266-272
    • /
    • 2007
  • A rapid analytical method was developed to quantify very long-chain fatty acids (VLCFAs, C22:0, C24:0, C26:0) in human plasma with good sensitivity and specificity using tert-butyldimethylsilyl (TBDMS) derivatization and stable isotope GC-MS selective ion monitoring (GC-MS/SIM). Two-hundred and fifty ${\mu}L$ of plasma was fortified with deuterated stable isotope internal standards (d3-C22:0, d3-C24:0, d3-C26:0) and standard mixtures of chloroform and methanol, and then extracted with hexane and acetonitrile. To upper layer of liquid-liquid-extraction, N-(t-Butyldimethylsilyl)-N-methyltrifluoroacetamide was added and then heated to $60^{\circ}C$ for 30 min to produce the TBDMS derivatives. Derivatives of VLCFAs were analyzed by GC-MS/SIM. Calibration curves showed a linear relationship for the target compounds in the concentration range of $10^{-4}{\sim}2{\times}10^3\;{\mu}g/mL$ with the correlation coefficient ranging from 0.996 to 0.999. The limit of quantification for the plasma was $10^{-4}{\sim}2{\times}10^{-4}\;{\mu}g/mL$ (S/N=3). When applied to the plasma specimens of patients with peroxisomal disorder, X-linked adrenoleucodystropy (ALD, Mckusick 202370), the method clearly differentiated normal subjects from ALD patients. The C24:0/C22:0 and C26:0/C22:0 ratios were significantly elevated in the plasma of patients with X-linked ALD compared to normal subjects. The new developed method might be useful for a rapid and sensitive diagnosis of X-linked ALD and other peroxisomal disorders.

Quantitative Proteomics Towards Understanding Life and Environment

  • Choi, Jong-Soon;Chung, Keun-Yook;Woo, Sun-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.4
    • /
    • pp.371-381
    • /
    • 2006
  • New proteomic techniques have been pioneered extensively in recent years, enabling the high-throughput and systematic analyses of cellular proteins in combination with bioinformatic tools. Furthermore, the development of such novel proteomic techniques facilitates the elucidation of the functions of proteins under stress or disease conditions, resulting in the discovery of biomarkers for responses to environmental stimuli. The ultimate objective of proteomics is targeted toward the entire proteome of life, subcellular localization biochemical activities, and the regulation thereof. Comprehensive analysis strategies of proteomics can be classified into three categories: (i) protein separation via 2-dimensional gel electrophoresis (2-DE) or liquid chromatography (LC), (ii) protein identification via either Edman sequencing or mass spectrometry (MS), and (iii) proteome quantitation. Currently, MS-based proteomics techniques have shifted from qualitative proteome analysis via 2-DE or 2D-LC coupled with off-line matrix assisted laser desorption ionization (MALDI) and on-line electrospray ionization (ESI) MS, respectively, toward quantitative proteome analysis. In vitro quantitative proteomic techniques include differential gel electrophoresis with fluorescence dyes. protein-labeling tagging with isotope-coded affinity tags, and peptide-labeling tagging with isobaric tags for relative and absolute quantitation. In addition, stable isotope-labeled amino acids can be in vivo labeled into live culture cells via metabolic incorporation. MS-based proteomics techniques extend to the detection of the phosphopeptide mapping of biologically crucial proteins, which ale associated with post-translational modification. These complementary proteomic techniques contribute to our current understanding of the manner in which life responds to differing environment.