• Title/Summary/Keyword: D-cellobiose

Search Result 49, Processing Time 0.026 seconds

Purification and Characterization of an Extracellular ${\beta}$-Glucosidase Produced by Phoma sp. KCTC11825BP Isolated from Rotten Mandarin Peel

  • Choi, Jung-Youn;Park, Ah-Reum;Kim, Yong-Jin;Kim, Jae-Jin;Cha, Chang-Jun;Yoon, Jeong-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.503-508
    • /
    • 2011
  • A ${\beta}$-glucosidase from Phoma sp. KCTC11825BP isolated from rotten mandarin peel was purified 8.5-fold with a specific activity of 84.5 U/mg protein. The purified enzyme had a molecular mass of 440 kDa with a subunit of 110 kDa. The partial amino acid sequence of the purified ${\beta}$-glucosidase evidenced high homology with the fungal ${\beta}$- glucosidases belonging to glycosyl hydrolase family 3. Its optimal activity was detected at pH 4.5 and $60^{\circ}C$, and the enzyme had a half-life of 53 h at $60^{\circ}C$. The $K_m$ values for p-nitrophenyl-${\beta}$-D-glucopyranoside and cellobiose were 0.3 mM and 3.2 mM, respectively. The enzyme was competitively inhibited by both glucose ($K_i$=1.7 mM) and glucono-${\delta}$-lactone ($K_i$=0.1 mM) when pNPG was used as the substrate. Its activity was inhibited by 41% by 10 mM $Cu^{2+}$ and stimulated by 20% by 10 mM $Mg^{2+}$.

Characterization of β-Glucosidase Produced by the White Rot Fungus Flammulina velutipes

  • Mallerman, Julieta;Papinutti, Leandro;Levin, Laura
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.57-65
    • /
    • 2015
  • β-Glucosidase production by the white rot fungus Flammulina velutipes CFK 3111 was evaluated using different carbon and nitrogen sources under submerged fermentation. Maximal extracellular enzyme production was 1.6 U/ml, corresponding to a culture grown in sucrose 40 g/land asparagine 10 g/l. High production yield was also obtained with glucose 10 g/land asparagine 4 g/l medium (0.5 U/ml). Parameters affecting the enzyme activity were studied using p-nitrophenyl-β-D-glucopyranoside as the substrate. Optimal activity was found at 50℃ and pHs 5.0 to 6.0. Under these conditions, β-glucosidase retained 25% of its initial activity after 12 h of incubation and exhibited a half-life of 5 h. The addition of MgCl2, urea, and ethanol enhanced the β-glucosidase activity up to 47%, whereas FeCl2, CuSO4, Cd(NO3)2, and cetyltrimethylammonium bromide inflicted a strong inhibitory effect. Glucose and cellobiose also showed an inhibitory effect on the β-glucosidase activity in a concentration-dependent manner. The enzyme had an estimated molecular mass of 75 kDa. To the best of our knowledge, F. velutipes CFK 3111 β-glucosidase production is amongst the highest reported to date, in a basidiomycetous fungus.

Crystal Structure of Hypothetical Fructose-Specific EIIB from Escherichia coli

  • Park, Jimin;Kim, Mi-Sun;Joo, Keehyung;Jhon, Gil-Ja;Berry, Edward A.;Lee, Jooyoung;Shin, Dong Hae
    • Molecules and Cells
    • /
    • v.39 no.6
    • /
    • pp.495-500
    • /
    • 2016
  • We have solved the crystal structure of a predicted fructose-specific enzyme $IIB^{fruc}$ from Escherichia coli ($EcEIIB^{fruc}$) involved in the phosphoenolpyruvate-carbohydrate phosphotransferase system transferring carbohydrates across the cytoplasmic membrane. $EcEIIB^{fruc}$ belongs to a sequence family with more than 5,000 sequence homologues with 25-99% amino-acid sequence identity. It reveals a conventional Rossmann-like ${\alpha}-{\beta}-{\alpha}$ sandwich fold with a unique ${\beta}$-sheet topology. Its C-terminus is longer than its closest relatives and forms an additional ${\beta}$-strand whereas the shorter C-terminus is random coil in the relatives. Interestingly, its core structure is similar to that of enzyme $IIB^{cellobiose}$ from E. coli ($EcIIB^{cel}$) transferring a phosphate moiety. In the active site of the closest $EcEIIB^{fruc}$ homologues, a unique motif CXXGXAHT comprising a P-loop like architecture including a histidine residue is found. The conserved cysteine on this loop may be deprotonated to act as a nucleophile similar to that of $EcIIB^{cel}$. The conserved histidine residue is presumed to bind the negatively charged phosphate. Therefore, we propose that the catalytic mechanism of $EcEIIB^{fruc}$ is similar to that of $EcIIB^{cel}$ transferring phosphoryl moiety to a specific carbohydrate.

Characterization of Acidic Carboxymethylcellulase Produced by a Marine Microorganism, Psychrobacter aquimaris LBH-10 (해양미생물 Psychrobacter aquimaris LBH-10가 생산하는 산성 carboxymethylcellulase의 특성에 대한 연구)

  • Kim, Hye-Jin;Gao, Wa;Lee, You-Jung;Chung, Chung-Han;Lee, Jin-Woo
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.487-495
    • /
    • 2010
  • A microorganism hydrolyzing carboxymethylcellulose (CMC) was isolated from seawater, identified as Psychrobacter aquimaris by analysis of 16S rDNA sequences, and named P. aquimari LBH-10. This strain produced an acidic carboxymethylcellulase (CMCase), which hydrolyzed carboxymethylcellulose (CMC), cellobiose, curdlan, filter paper, p-nitrophenyl-$\beta$-D-glucopyranoside (pNPG), pullulan, and xylan, but there was no detectable activity on avicel and cellulose. The optimal temperature for CMCase produced by P. aquimari LBH-10 was $50^{\circ}C$ and more than 90% of its original activity was maintained at broad temperatures ranging from 20 to $50^{\circ}C$ after 24 hr. The optimal pH of the CMCase was 3.5, and more than 70% of its original activity was maintained under acidic conditions between pH 2.5 and 7.0 at $50^{\circ}C$ after 24 hr. The optimal pH of CMCase produced by P. aquimaris LBH-10 seems to be lower than those produced by any other bacterial and fungal strain. $CoCl_2$, EDTA, and $PbCl_2$ at a concentration of 0.1 M enhanced CMCase-produced P. aquimaris LBH-10, whereas $HgCl_2$, KCl, $MnCl_2$, $NiCl_2$, and $SrCl_2$ inhibited it.

Soil Physico-Chemical Properties and Characteristics of Microbial Distribution in the Continuous Cropped Field with Paeonia lactiflora (작약 연작재배지의 토양 이화학성 및 미생물 분포특성)

  • Park, Jun-Hong;Seo, Yeong-Jin;Choi, Seong-Yong;Zhang, Yong-Sun;Ha, Sang-Keun;Kim, Jang-Eok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.841-846
    • /
    • 2011
  • This study was conducted to obtain the information about injury caused by continuous cropping of peony (Paeonia lactiflora). Soil physico-chemical properties, characteristics of microbial distribution and diversities in the continuous cropped field with peony were analyzed. As the results, pH and organic matter content were higher in the continuous cropping soil than those in the first cropping soil. Bulk density was decreased but porosity was increased in the continuous cropping soil. As the cultivation period was lengthened in years, the populations of bacteria and actinomyces were gradually decreased, whereas fungal population was increased. It was shown that the metabolic diversity patterns of the microbial communities in the continuous cropping soil differed from that of the first cropping soil. These results indicate that deterioration of soil quality such as physico-chemical properties including a soil depth, bulk density, porosity and soil pH is related with a continuous cultivation periods, and also affect a microbial population, especially fungi.

Kinetic Modeling of the Enzymatic Hydrolysis of $\alpha$-Cellulose at High Sugar Concentration (순수 섬유소에 대한 고농도 당화공정의 동력학적 모사)

  • 오경근;정용섭홍석인
    • KSBB Journal
    • /
    • v.11 no.2
    • /
    • pp.151-158
    • /
    • 1996
  • For the effective ethanol fermentation, the high concentration of sugar as the substrate of microbial fermentation is required. The most important reason in the inefficient hydrolysis; the easy deactivation of enzyme by temperature or shear stress and the severe inhibition effects of its products. In our work, we comprehended the kinetic characteristics of cellulose and ${\beta}$-glucosidase in the progress of hydrolysis, and observed the potential inhibitory effects of the hydrolyzed products and the deactivation of enzymes. We also tried to present the kinetic model of enzymatic hydrolysis of cellulose, which is applicable to process at the high concentration of sugar. Cellulase and ,${\beta}$-glucosidase exhibit diverse kinetic behaviors. At a level of only 5g/$\ell$ of glucose, the ${\beta}$-glucosidase activity was reduced by more than 70%. This result means that ${\beta}$-glucosldase was the most severely inhibited by glucose. Also at l0g/$\ell$ of cellobiose, the cellulose lost approximately 70% of its activity. ${\beta}$-glucosldase was more sensitive to deactivation than cellulose by about 1.6 times. The comprehensive kinetic model in the range of confidence was obtained and the agreement between the model prediction and the experimental data was reasonably good, testifying to the validity of the model equations used and the associated parameters.

  • PDF

Characterization of Three Extracellular β-Glucosidases Produced by a Fungal Isolate Aspergillus sp. YDJ14 and Their Hydrolyzing Activity for a Flavone Glycoside

  • Oh, Jong Min;Lee, Jae Pil;Baek, Seung Cheol;Jo, Yang Do;Kim, Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.757-764
    • /
    • 2018
  • A cellulolytic fungus, YDJ14, was isolated from compost and identified as an Aspergillus sp. strain. Three extracellular ${\beta}$-glucosidases, BGL-A1, BGL-A2, and BGL-A3, were separated using ultrafiltration, ammonium sulfate fractionation, and High-Q chromatography. The molecular masses of the three enzymes were estimated to be 100, 45, and 40 kDa, respectively, by SDS-PAGE. The optimum pH and temperature of BGL-A3 were 5.0 and $50^{\circ}C$, respectively, whereas the optimum pH and temperature of BGL-A1 and BGL-A2 were identical (4.0 and $60^{\circ}C$, respectively). The half-life of BGL-A3 at $70^{\circ}C$ (2.8 min) was shorter than that of BGL-A1 and BGL-A2 (12.1 and 8.8 min, respectively). All three enzymes preferred p-nitrophenyl-${\beta}$-$\text\tiny{D}$-glucopyranoside (pNPG) and hardly hydrolyzed cellobiose, suggesting that these enzymes were aryl ${\beta}$-glucosidases. The $K_m$ of BGL-A3 (1.26 mM) for pNPG was much higher than that of BGL-A1 and BGL-A2 (0.25 and 0.27 mM, respectively). These results suggested that BGL-A1 and BGL-A2 were similar in their enzymatic properties, whereas BGL-A3 differed from the two enzymes. When tilianin (a flavone glycoside of acacetin) was reacted with the three enzymes, the inhibitory activity for monoamine oxidase, a target in the treatment of neurological disorders, was similar to that shown by acacetin. We conclude that these enzymes may be useful in the hydrolysis of flavone glycosides to improve their inhibitory activities.

Development of Yeast-Fermented Animal Feed (연모교발효사요의 제조 및 사양에 관한 연구)

  • 박명삼
    • Microbiology and Biotechnology Letters
    • /
    • v.3 no.3
    • /
    • pp.123-134
    • /
    • 1975
  • Out of 96 yeast strains isolated from various natural habitats, five strains were screened based on their ability to ferment agricultural biproducts such as rice-, barley-and wheat-bran, and sawdust. These were identified as Hansenula anomala var anomala, Candide utilis, C. pelliculosa, Debaryomyces hansenii, and Irpex lacteus. Using these yeasts the above mentioned agricultural biproducts were fermented in various combinations. The fermented product was fed to 180 male Starcroses for eight weeks and obtained a body weight increase of 15.1g a day, while the unfermented control feed increased 10.5g a day.

  • PDF

Self-purification Mechanisms in Natural Environments of Korea: I. A Preliminary Study on the Behavior of Organic/Inorganic Elements in Tidal Flats and Rice Fields (자연 정화작용 연구: I. 갯벌과 농지 상층수중 유 ${\cdot}$ 무기 원소의 거동에 관한 예비 연구)

  • Choi, Kang-Won;Cho, Yeong-Gil;Choi, Man-Sik;Lee, Bok-Ja;Hyun, Jung-Ho;Kang, Jeong-Won;Jung, Hoi-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.195-207
    • /
    • 2000
  • Organic and inorganic characteristics including bacterial cell number, enzyme activity, nutrients, and heavy metals have been monitored in twelve acrylic experimental tanks for two weeks to estimate and compare self-purification capacities in two Korean wet-land environments, tidal flat and rice field, which are possibly different with the environments in other countries because of their own climatic conditions. FW tanks, filled with rice field soils and fresh water, consist of FW1&2 (with paddy), FW3&4 (without paddy), and FW5&6 (newly reclaimed, without paddy). SW tanks, filled with tidal flat sediments and salt water, are SW1&2 (with anoxic silty mud), SW3&4 (anoxic mud), and SW5&6 (suboxic mud). Contaminated solution, which is formulated with the salts of Cu, Cd, As, Cr, Pb, Hg, and glucose+glutamic acid, was spiked into the supernatent waters in the tanks. Nitrate concentrations in supernatent waters as well as bacterial cell numbers and enzyme activities of soils in the FW tanks (except FW5&6) are clearly higher than those in the SW tanks. Phosphate concentrations in the SW1 tank increase highly with time compared to those in the other SW tanks. Removal rates of Cu, Cd, and As in supematent waters of the FW5&6 tanks are most slow in the FW tanks, while the rates in SW1&2 are most fast in the SW tanks. The rate for Pb in the SW1&2 tanks is most fast in the SW tanks, and the rate for Hg in the FW5&6 tanks is most slow in the FW tanks. Cr concentrations decrease generally with time in the FW tanks. In the SW tanks, however, the Cr concentrations decrease rapidly at first, then increase, and then remain nearly constant. These results imply that labile organic materials are depleted in the FW5&6 tanks compared to the FW1&2 and FW3&4 tanks. Removal of Cu, Cd, As from the supernatent waters as well as slow removal rates of the elements (including Hg) are likely due to the combining of the elements with organic ligands on the suspended particles and subsequent removal to the bottom sediments. Fast removal rates of the metal ions (Cu, Cd, As) and rapid increase of phosphate concentrations in the SW1&2 tanks are possibly due to the relatively porous anoxic sediments in the SW1&2 tanks compared to those in the SW3&4 tanks, efficient supply of phosphate and hydrogen sulfide ions in pore wates to the upper water body, complexing of the metal ions with the sulfide ions, and subsequent removal to the bottom sediments. Organic materials on the particles and sulfide ions from the pore waters are the major factors constraining the behaviors of organic/inorganic elements in the supernatent waters of the experimental tanks. This study needs more consideration on more diverse organic and inorganic elements and experimental conditions such as tidal action, temperature variation, activities of benthic animals, etc.

  • PDF