• 제목/요약/키워드: D-LDA

검색결과 68건 처리시간 0.02초

앙상블 접근법을 이용한 반감독 차원 감소 방법 (A Semi-supervised Dimension Reduction Method Using Ensemble Approach)

  • 박정희
    • 정보처리학회논문지D
    • /
    • 제19D권2호
    • /
    • pp.147-150
    • /
    • 2012
  • 클래스들 간의 거리를 최대화시키는 사영 방향을 구하는 감독차원감소 방법인 선형판별분석법(LDA)은 클래스 정보를 가진 데이터의 수가 매우 적을 때 성능이 급격히 저하되는 경향이 있다. 이러한 경우 상대적으로 저렴한 비용으로 얻을 수 있는 클래스 라벨 정보가 없는 데이터를 활용할 수 있는 반감독 차원 감소법이 사용될 수 있다. 그러나 통계적 차원 감소법에서 흔히 사용되는 행렬연산은 많은 양의 데이터를 사용하는데 메모리와 처리시간에서 한계가 있고, 적은 수의 라벨드 데이터(labeled data)에 비해 너무나 많은 언라벨드 데이터(unlabeled data)의 사용은 처리 시간의 증가에 비해 오히려 성능감소를 가져올 수 있다. 이러한 문제들을 극복하기 위해 앙상블 접근법을 이용한 반감독 차원 감소 방법을 제안한다. 문서분류 문제에서의 실험결과를 통해 제안한 방법의 성능을 입증한다.

미래 자동차 분야 국가연구개발사업의 주요 연구 토픽과 투자 동향 분석: LDA 토픽모델링을 중심으로 (Exploring Key Topics and Trends of Government-sponsored R&D Projects in Future Automotive Fields: LDA Topic Modeling Approach)

  • 마형렬;이철주
    • 한국산업정보학회논문지
    • /
    • 제29권1호
    • /
    • pp.31-48
    • /
    • 2024
  • 글로벌 자동차 산업은 연결, 자율주행, 공유, 전동화 등의 주요 방향 아래 지속적으로 발전하고 있으며, 국내 자동차 산업 또한 기존의 전통적인 자동차 부품 제조로부터 미래 트렌드에 부합하는 전략적인 업의 전환을 꾀하고 있다. 본 연구에서는 2013년부터 2021년까지 산업통상자원부에서 지원한 미래 자동차 분야 연구개발 과제를 대상으로 토픽 모델링을 수행하였다. 해당 기간을 3개 기간으로 구분하여 주요 토픽의 변화를 분석하였다. 센서와 통신, 운전자 보조 기술, 배터리 및 전력 기술은 전 기간 동안 지속적인 주요 토픽으로 나타났으며, 고강도 경량 차체와 같은 주제는 1기에서만 관찰되었다. 한편, AI, 빅데이터, 수소 연료전지와 같은 주제는 2기와 3기에 점점 더 중요한 토픽으로 부상하였다. 또한, 토픽별 정부 투자액과 투자 증가율을 기준으로 각 기수별 집중 투자 분야를 분석하였다. 이러한 연구 결과는 향후 자동차 분야의 정책 수립 및 연구개발 전략 마련 시 기초 자료로 활용될 것으로 예상되며, 증거 기반의 정책 수립과 결정에 기여할 것으로 기대된다.

조명 변화 환경에서 이진패턴 영상을 이용한 얼굴인식 방법에 관한 연구 (A Study on Face Recognition Method based on Binary Pattern Image under Varying Lighting Condition)

  • 김동주;손명규;이상헌
    • 전자공학회논문지CI
    • /
    • 제49권2호
    • /
    • pp.61-74
    • /
    • 2012
  • 본 논문에서는 MCS-LBP 이진패턴 영상과 2D-PCA 알고리즘을 이용한 조명 변화에 강인한 얼굴인식 시스템에 대하여 제안한다. 이진패턴 변환은 기존의 얼굴인식 및 표정인식 분야에 사용되는 기법으로, 일반적으로 조명 변화에 강인한 특성을 갖는다. 이에 본 논문에서는 기존의 LBP보다 조명 변화에 더 강인한 MCS-LBP를 제안하고, 더불어 2D-PCA 알고리즘과 결합하는 얼굴인식 시스템을 제안한다. 제안하는 얼굴인식 방법의 성능평가는 기존의 다양한 이진패턴 변환 영상과 얼굴인식에 널리 사용되고 있는 PCA, LDA, 2D-PCA 및 가버영상의 ULBP 히스토그램 특징을 사용하여 수행하였다. 다양한 조명변화 환경에서 구축된 YaleB, extended YaleB, CMU-PIE 등의 공인 얼굴 데이터베이스를 이용하여 실험한 결과, 제안하는 MCS-LBP영상과 2D-PCA 특징을 사용한 방법이 가장 우수한 인식 성능을 보였다.

헤비페르미온계 CeNi2Ge2의 자기 및 열적 특성 (The Magnetic and Thermal Properties of a Heavy Fermion CeNi2Ge2)

  • 정태성
    • 한국재료학회지
    • /
    • 제29권7호
    • /
    • pp.451-455
    • /
    • 2019
  • The electromagnetic and thermal properties of a heavy fermion $CeNi_2Ge_2$ are investigated using first-principle methods with local density approximation (LDA) and fully relativistic approaches. The Ce f-bands are located near the Fermi energy $E_F$ and hybridized with the Ni-3d states. This hybridization plays important roles in the characteristics of this material. The fully relativistic approach shows that the 4f states split into $4f_{7/2}$ and $4f_{5/2}$ states due to spin-orbit coupling effects. It can be found that within the LDA calculation, the density of states near the Fermi level are mainly of Ce-derived 4f states. The Ni-derived 3d states have high peaks around -1.7eV and spreaded over wide range around the Fermi level. The calculated magnetic of $CeNi_2Ge_2$ with LDA method does not match with that of experimental result because of strong correlation interaction between electrons in f orbitals. The calculations show that the specific heat coefficient underestimates the experimental value by a factor of 19.1. The discrepancy between the band calculation and experiment for specific heat coefficient is attributed to the formation of a quasiparticle. Because of the volume contraction, the exchange interaction between the f states and the conduction electrons is large in $CeNi_2Ge_2$, which increases the quasiparticle mass. This will result in the enhancement of the specific hear coefficient.

토픽모델링을 활용한 대학생의 중도탈락 데이터 분석 (Data Analysis of Dropouts of University Students Using Topic Modeling)

  • 정도헌;박주연
    • 한국정보통신학회논문지
    • /
    • 제25권1호
    • /
    • pp.88-95
    • /
    • 2021
  • 본 연구의 목적은 대학생의 중도탈락 현상 데이터를 실증적으로 분석하여 대학의 학생지원정책을 수립하기 위한 시사점을 제공하는 데 있다. 이를 위해 D대학의 2017~2019년 입학생 데이터를 토픽모델링 LDA(Latent Dirichlet Allocation)를 활용하여 재학생과 제적생으로 나누어 분석하였다. 연구결과 제적생에서 특징있게 나타난 토픽은 '학적'관련하여 '학기등록 1회', '전공'관련하여 '어문계열학과', '학점'관련하여 '학사경고'이고, '대학생활'관련하여 '비교과 프로그램'에 대한 토픽은 나타나지 않았다. 다음으로 '재학생 토픽'과 '제적생 토픽'의 상호 식별 성능을 측정한 결과, SVM(Support Vector Machines)이 가장 우수한 식별 성능을 보여주었다. 이러한 실험을 통해 기계학습을 활용한 인공지능 기반의 학생 데이터 분류 기법 연구의 가능성을 확인할 수 있었다.

Technology Development Strategy of Piggyback Transportation System Using Topic Modeling Based on LDA Algorithm

  • Jun, Sung-Chan;Han, Seong-Ho;Kim, Sang-Baek
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권12호
    • /
    • pp.261-270
    • /
    • 2020
  • 본 연구는 피기백 화차운송 시스템의 특허문서를 활용하여 관련 분야의 유망기술을 파악하는 것을 목표로 한다. 이를 위해 피기백 운송 시스템의 선행연구 및 관련 보고서로 기술 키워드를 추출하여 특허문서를 추출한다. 추출된 특허문서에 텍스트마이닝 기법을 적용하여 빈도수가 높은 키워드를 확인하고 피기백 운송 시스템의 핵심기술의 토픽을 식별하기 위해 LDA(Latent Dirichlet Allocation) 알고리즘을 적용하였다. 마지막으로, 시계열 분석 기법인 ARIMA 모델을 핵심기술의 토픽에 적용하여 기술 추세를 예측하고 피기백 운송 시스템에 대한 유망한 기술을 식별하였다. 특허 분석 결과, 데이터 기반 통합관리 시스템과 운영 계획 시스템 그리고 복합수송 중 특수 화물(기체, 액체류) 운송 및 보관 기술이 미래에 유망한 핵심기술로 도출되었고, 데이터 송수신 및 분석 기술이 중요한 세부 기술임을 확인하였다. 제안된 분석 방법은 피기백 운송 시스템의 R&D 연구개발 전략 및 기술 로드맵을 개발하는 데 있어 충분한 자료가 될 수 있다.

토픽모델링과 시계열 분석을 활용한 클라우드 보안 분야 연구 동향 분석 : NTIS 과제를 중심으로 (Analysis of Research Trends in Cloud Security Using Topic Modeling and Time-Series Analysis: Focusing on NTIS Projects)

  • 윤선영;조남옥
    • 융합보안논문지
    • /
    • 제24권2호
    • /
    • pp.31-38
    • /
    • 2024
  • 최근 클라우드 서비스 사용이 확산하면서 클라우드 보안의 중요성이 증가하였다. 본 연구의 목적은 클라우드 보안 분야의 최근 연구 동향을 분석하고 시사점을 도출하는 것이다. 이를 위해 2010년부터 2023년까지 국가과학기술지식정보서비스(NTIS)에서 제공하는 R&D 과제 데이터를 활용하여 클라우드 보안 연구 동향을 분석하였다. LDA 토픽모델링과 ARIMA 시계열 분석을 통해 클라우드 보안 연구의 핵심 토픽 15개를 도출하였으며, AI를 활용한 보안 기술, 개인정보 및 데이터보안, IoT 환경에서의 보안 문제 해결이 연구에서 중요한 영역임을 확인했다. 이는 클라우드 기술의 확산과 기반 시설의 디지털 전환으로 인해 발생할 수 있는 보안 위협에 대응하기 위해 관련 연구가 필요함을 시사한다. 도출된 토픽들을 기반으로 클라우드 보안 분야를 네 가지 범주로 나누어 기술참조모델을 정의하였으며, 전문가 인터뷰를 통해 해당 기술참조모델을 개선하였다. 본 연구는 클라우드 보안 발전의 방향을 제시하며 학계 및 산업계에 미래 연구와 투자에 대한 중요한 지침을 제공할 것으로 기대된다.

토픽모델링 분석을 활용한 국가연구개발사업과제와 국회 상임위원회 사이의 정책 인식 비교 : ICT 분야를 중심으로 (Comparison of policy perceptions between national R&D projects and standing committees using topic modeling analysis : focusing on the ICT field)

  • 송병기;김상웅
    • 산업융합연구
    • /
    • 제20권7호
    • /
    • pp.1-11
    • /
    • 2022
  • 본 논문에서는 여러 연구기관에서 논의하고 있는 데이터 기반 평가 방법론 중 토픽모델링 기법을 이용하여 계량적인 값을 도출하고 그 과정에서 실제 전문가들이 수행하는 국가연구개발사업과제와 이를 법률과 정책실무에서 다루는 국회 상임위원회 간의 정책적 인식 차이가 있는지 ICT 분야를 중심으로 파악해 보고자 한다. 먼저 HAN 모델로 사업과제 데이터를 학습하여 ICT 문서를 분류하는 모델을 만들고, 해당 모델을 통해 분류된 ICT 문서를 대상으로 LDA 토픽모델링 분석을 수행하여 국가연구개발사업과제 데이터와 국회 상임위원회 회의록에서 도출된 토픽과 분포를 비교한다. 구체적으로 총 26개의 토픽이 도출되었으며, 각 토픽이 포함하는 단어와 문서 분포 비율을 살펴봤을 때, 국가사업과제는 상대적으로 전문적인 주제의 문서가 많았으며, 국회 상임위원회는 상대적으로 사회적이고 대중적인 문제를 다루는 것으로 나타나 인식에 다소 차이가 있는 것으로 보였다. 인식의 차이를 수치적으로 확인할 수 있는 만큼, 향후 정책이나 과제 평가에 사용할 수 있는 지표에 대한 기초연구로 활용 가능할 것이다.

특허 분석을 이용한 글로벌 스마트 물류 트렌드 분석: 국내 물류 산업 발전을 중심으로 (Analysis of Global Smart Logistics Trends Using Patent Analysis: Focusing on the Development of the Domestic Logistics Industry)

  • 송영철;류슬기;박민영;이다예;윤병운
    • 산업경영시스템학회지
    • /
    • 제47권3호
    • /
    • pp.181-190
    • /
    • 2024
  • The era of logistics 4.0 in which new technologies are applied to existing traditional logistics management has approached. It is developing based on the convergence between various technologies, and R&D are being conducted worldwide to build smart logistics by synchronizing various services with the logistics industry. Therefore, this study proposes a methodology and technology strategy that can achieve trend analysis using patent analysis and promote the development of the domestic smart logistics industry based on this. Based on the preceding research, eight key technology fields related to smart logistics were selected, and technology trends were derived through LDA techniques. After that, for the development of the domestic logistics industry, the strategy of the domestic smart logistics industry was derived based on analysis including technology capabilities. It proposed a growth plan in the field of big data and IoT in terms of artificial intelligence, autonomous vehicles, and marketability. This study confirmed smart logistics technologies by using LDA and quantitative indicators expressing the market and technology of patents in literature analysis-oriented research that mainly focused on trend analysis. It is expected that this method can also be applied to emerging logistics technologies in the future.

BERTopic을 활용한 인간-로봇 상호작용 동향 연구 (A Study on Human-Robot Interaction Trends Using BERTopic)

  • 김정훈;곽기영
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.185-209
    • /
    • 2023
  • 4차 산업혁명의 도래와 함께 다양한 기술이 주목을 받고 있다. 4차 산업혁명과 관련된 기술로는 IoT(Internet of Things), 빅데이터, 인공지능, VR(Virtual Reality), 3D 프린터, 로봇공학 등이 있으며 이러한 기술은 종종 융합된다. 특히 로봇 분야는 빅데이터, 인공지능, VR, 디지털 트윈과 같은 기술과 결합할 것으로 기대된다. 이에 따라 로봇을 활용한 연구가 다수 진행되고 있으며 유통, 공항, 호텔, 레스토랑, 교통 분야 등에 적용되고 있다. 이러한 상황에서 인간-로봇 상호작용에 대한 연구가 주목을 받고 있지만 아직 만족할 만한 수준에는 이르지 못하고 있다. 하지만 완벽한 의사소통이 가능한 로봇에 대한 연구가 꾸준히 이루어지고 있고 이는 인간의 감정노동을 대신할 수 있을 것으로 기대된다. 따라서 현재의 인간-로봇 상호작용 기술을 비즈니스에 적용할 수 있는지에 대한 논의가 필요하다. 이를 위해 본 연구는 첫째, 인간로봇 상호작용 기술의 동향을 살펴본다. 둘째, LDA(Latent Dirichlet Allocation) 토픽모델링과 BERTopic 토픽모델링 방법을 비교한다. 연구 결과, 1992년~2002년 간의 연구에서는 인간-로봇 상호작용에 대한 개념과 기초적인 상호작용에 대해 논의되고 있었다. 2003년~2012년에는 사회적 표현에 대한 연구가 많이 진행되었으며 얼굴검출, 인식 등과 같이 판단과 관련된 연구도 수행되었다. 2013년~2022년에는 노인 간호, 교육, 자폐 치료와 같은 서비스 토픽들이 등장하였으며, 사회적 표현에 대한 연구가 지속되었다. 그러나 아직까지 비즈니스에 적용할 수 있는 수준에는 이르지 못한 것으로 보인다. 그리고 LDA토픽모델링과 BERTopic 토픽모델링 방법을 비교한 결과 LDA에 비해 BERTopic이 더 우수한 방법임을 확인하였다.