• 제목/요약/키워드: D-LDA

검색결과 68건 처리시간 0.021초

가중치가 적용된 공분산을 이용한 2D-LDA 기반의 얼굴인식 (Improved Face Recognition based on 2D-LDA using Weighted Covariance Scatter)

  • 이석진;오치민;이칠우
    • 한국멀티미디어학회논문지
    • /
    • 제17권12호
    • /
    • pp.1446-1452
    • /
    • 2014
  • Existing LDA uses the transform matrix that maximizes distance between classes. So we have to convert from an image to one-dimensional vector as training vector. However, in 2D-LDA, we can directly use two-dimensional image itself as training matrix, so that the classification performance can be enhanced about 20% comparing LDA, since the training matrix preserves the spatial information of two-dimensional image. However 2D-LDA uses same calculation schema for transformation matrix and therefore both LDA and 2D-LDA has the heteroscedastic problem which means that the class classification cannot obtain beneficial information of spatial distances of class clusters since LDA uses only data correlation-based covariance matrix of the training data without any reference to distances between classes. In this paper, we propose a new method to apply training matrix of 2D-LDA by using WPS-LDA idea that calculates the reciprocal of distance between classes and apply this weight to between class scatter matrix. The experimental result shows that the discriminating power of proposed 2D-LDA with weighted between class scatter has been improved up to 2% than original 2D-LDA. This method has good performance, especially when the distance between two classes is very close and the dimension of projection axis is low.

An Ensemble Classifier using Two Dimensional LDA

  • Park, Cheong-Hee
    • 한국멀티미디어학회논문지
    • /
    • 제13권6호
    • /
    • pp.817-824
    • /
    • 2010
  • Linear Discriminant Analysis (LDA) has been successfully applied for dimension reduction in face recognition. However, LDA requires the transformation of a face image to a one-dimensional vector and this process can cause the correlation information among neighboring pixels to be disregarded. On the other hand, 2D-LDA uses 2D images directly without a transformation process and it has been shown to be superior to the traditional LDA. Nevertheless, there are some problems in 2D-LDA. First, it is difficult to determine the optimal number of feature vectors in a reduced dimensional space. Second, the size of rectangular windows used in 2D-LDA makes strong impacts on classification accuracies but there is no reliable way to determine an optimal window size. In this paper, we propose a new algorithm to overcome those problems in 2D-LDA. We adopt an ensemble approach which combines several classifiers obtained by utilizing various window sizes. And a practical method to determine the number of feature vectors is also presented. Experimental results demonstrate that the proposed method can overcome the difficulties with choosing an optimal window size and the number of feature vectors.

Relevance-Weighted $(2D)^2$LDA Image Projection Technique for Face Recognition

  • Sanayha, Waiyawut;Rangsanseri, Yuttapong
    • ETRI Journal
    • /
    • 제31권4호
    • /
    • pp.438-447
    • /
    • 2009
  • In this paper, a novel image projection technique for face recognition application is proposed which is based on linear discriminant analysis (LDA) combined with the relevance-weighted (RW) method. The projection is performed through 2-directional and 2-dimensional LDA, or $(2D)^2$LDA, which simultaneously works in row and column directions to solve the small sample size problem. Moreover, a weighted discriminant hyperplane is used in the between-class scatter matrix, and an RW method is used in the within-class scatter matrix to weigh the information to resolve confusable data in these classes. This technique is called the relevance-weighted $(2D)^2$LDA, or RW$(2D)^2$LDA, which is used for a more accurate discriminant decision than that produced by the conventional LDA or 2DLDA. The proposed technique has been successfully tested on four face databases. Experimental results indicate that the proposed RW$(2D)^2$LDA algorithm is more computationally efficient than the conventional algorithms because it has fewer features and faster times. It can also improve performance and has a maximum recognition rate of over 97%.

RGB-D 이미지 인텐시티를 이용한 실내 모바일 로봇 장애물 회피 (Obstacle Avoidance of Indoor Mobile Robot using RGB-D Image Intensity)

  • 권기현;이형봉
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권10호
    • /
    • pp.35-42
    • /
    • 2014
  • 주어진 실내 환경에 위치한 여러 장애물에 대한 정보를 사전에 훈련하고 인식하여 로봇의 인지 능력을 향상시키기 위해 스테레오비전 센서의 RGB-D 이미지에서 인텐시티를 기반으로 일정 거리 안에 있는 장애물을 검출하는 기법을 제시한다. RGB-D 인텐시티 정보에 대해 PCA, ICA, LDA, SVM의 주요 패턴인식 알고리즘을 적용하여 인식률 및 실행시간을 구하고, 여러 패턴인식 알고리즘 중에서 어떤 알고리즘이 인식률 및 실행시간 측면에서 적용이 가능한지를 제시한다. 실험결과, RGB-D 데이터와 인텐시티 데이터를 비교한 결과 정확도면에서는 RGB-D 데이터가 4.2% 높은 인식률을 보였으나 훈련시간은 인텐시티 데이터가 RGB-D 이미지에 비해 LDA의 경우 29%, SVM의 경우 31% 빠르게 처리되었으며 테스트시간은 LDA의 경우 70%, SVM의 경우 33% 빠르게 처리되어 모바일 로봇 장애물 인식에 인텐시티 데이터를 사용하는 것이 정확도면에서도 우수하고 처리 속도 면에서 높은 개선효과가 있다.

얼굴 인식을 위한 2D DLDA 알고리즘 (2D Direct LDA Algorithm for Face Recognition)

  • 조동욱;장언동;김영길;송영준;안재형;김봉현
    • 한국통신학회논문지
    • /
    • 제30권12C호
    • /
    • pp.1162-1166
    • /
    • 2005
  • 본 논문에서는 얼굴 인식을 위한 새로운 저차원 특징 표현 기법을 제안하였다. 선형판별기법(LDA)는 인기있는 특징추출 기법이다. 하지만 고차원 데이터의 경우에 계산적인 복잡도가 높고 샘플의 개수가 적은 경우 역행렬을 구할 수 없는 특이행렬문제에 직면한다. 이러한 문제들을 해결하기 위해 일반적인 선형판별기법과 다르게 우리는 이차원 이미지 공분산 행렬을 구한 다음 직접선형판별기법(dirct LDA)을 적용하였으며 이것을 2D-DLDA라고 부른다. ORL 얼굴데이터베이스를 사용하여 실험한 결과 기존의 직접선형판별기법보다 성능이 우수함을 확인하였다.

효과적인 얼굴 표정 인식을 위한 퍼지 웨이브렛 LDA융합 모델 연구 (A Study on Fuzzy Wavelet LDA Mixed Model for an effective Face Expression Recognition)

  • 노종흔;백영현;문성룡
    • 한국지능시스템학회논문지
    • /
    • 제16권6호
    • /
    • pp.759-765
    • /
    • 2006
  • 본 논문에서는 퍼지 소속 함수와 웨이브렛 기저를 이용한 효과적인 얼굴 표정 인식 LDA 융합모델을 제안하였다. 제안된 알고리즘은 최적의 영상을 얻기 위해 퍼지 웨이브렛 알고리즘을 수행하고, 표정 검출은 얼굴 특징 추출단계와 얼굴표절인식 단계로 구성된다. 본 논문에서 얼굴 표정이 담긴 영상을 PCA를 적용하여 고차원에서 저차원의 공간으로 변환 후, LDA 특성을 이용하여 클래스 별호 특징벡터를 분류한다. LDA 융합 모델은 얼굴 표정인식단계는 제안된 LDA융합모델의 특징 벡터에 NNPC를 적응함으로서 얼굴 표정을 인식한다. 제안된 알고리즘은 6가지 기본 감정(기쁨, 화남, 놀람, 공포, 슬픔, 혐오)으로 구성된 데이터베이스를 이용해 실험한 결과, 기존알고리즘에 비해 향상된 인식률과 특정 표정에 관계없이 고른 인식률을 보임을 확인하였다.

부분공간 기반 특징 추출기의 조명 변인에 대한 얼굴인식 성능 분석 (Face Recognition Evaluation of an Illumination Property of Subspace Based Feature Extractor)

  • 김광수;부덕희;안정호;곽수영;변혜란
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권7호
    • /
    • pp.681-687
    • /
    • 2007
  • 오늘날 개인의 정보 보호 및 신분 확인을 위하여 생체 인식 분야 중에서 사람의 얼굴 인식기술이 많이 사용되고 있지만 조명, 자세, 표정 변화로 인하여 얼굴 인식의 성능 저하를 일으키는 문제가 있다. 본 논문에서는 얼굴 인식 결과에 큰 영향을 주는 요소인 조명 변화에 초점을 맞춰 D-LDA(Direct-Linear Disciminant Analysis)가 다른 기법들에 비해 덜 민감하게 수행할 수 있는 성질을 지녔음을 밝히 고자 한다. 측면광과 역광등의 조명 변화와 농도의 변화를 고려하여 조명 변화를 갖는 테스트를 갖는 ORL, Yale, 포항공대 데이타베이스를 여러 특징 추출 알고리즘에 적용함으로써 클래스, 학습 데이타 그리고 테스트 데이타 수가 각기 다른 세 종류의 데이타베이스에서 모두 D-LDA가 적은 학습 데이터에서도 조명 변인에 가장 덜 민감하게 반응하는 좋은 인식 성능을 갖는 성질을 지녔음을 보여준다.

LDA 토픽모델링을 통한 ICT분야 국가연구개발사업의 주요 연구토픽 및 동향 탐색 (Investigation of Research Topic and Trends of National ICT Research-Development Using the LDA Model)

  • 우창우;이종연
    • 한국융합학회논문지
    • /
    • 제11권7호
    • /
    • pp.9-18
    • /
    • 2020
  • 본 논문의 연구목표는 LDA(Latent Dirichlet Allocation) 모델을 적용하여 국가연구개발사업을 통해 수행되고 있는 ICT(Information and Communication Technology) 분야의 연구과제에 대한 주요 연구 토픽과 동향을 탐색하는데 있다. 연구방법에는 NTIS(National Science and Technology Information Service)로부터 최근 5년간 국가연구개발사업의 전체 연구과제 정보를 다운로드받고 이를 정보통신기획평가원(IITP)의 EZone 시스템과 매칭하여 ICT 분야 연구과제 5,200건을 확보하고, 토픽모델링 기법중 하나인 LDA 모델을 적용하여 연구토픽과 연구동향을 조사하였다. 실험결과로, ICT분야 연구과제에 대한 연구토픽은 인공지능, 빅데이터, 사물인터넷(Internet of Things)과 같은 지능정보기술로 확인되었고 연구동향에는 초실감미디어에 관한 연구가 활발히 진행되고 있음을 확인하였다. 끝으로 본 논문에서 진행된 국가연구개발사업에 대한 토픽모델링 결과는 향후 ICT분야 연구개발 계획 및 전략수립, 정책, 과제기획 등 중요한 정보로 활용될 수 있을 것이다.

2D-MELPP: A two dimensional matrix exponential based extension of locality preserving projections for dimensional reduction

  • Xiong, Zixun;Wan, Minghua;Xue, Rui;Yang, Guowei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권9호
    • /
    • pp.2991-3007
    • /
    • 2022
  • Two dimensional locality preserving projections (2D-LPP) is an improved algorithm of 2D image to solve the small sample size (SSS) problems which locality preserving projections (LPP) meets. It's able to find the low dimension manifold mapping that not only preserves local information but also detects manifold embedded in original data spaces. However, 2D-LPP is simple and elegant. So, inspired by the comparison experiments between two dimensional linear discriminant analysis (2D-LDA) and linear discriminant analysis (LDA) which indicated that matrix based methods don't always perform better even when training samples are limited, we surmise 2D-LPP may meet the same limitation as 2D-LDA and propose a novel matrix exponential method to enhance the performance of 2D-LPP. 2D-MELPP is equivalent to employing distance diffusion mapping to transform original images into a new space, and margins between labels are broadened, which is beneficial for solving classification problems. Nonetheless, the computational time complexity of 2D-MELPP is extremely high. In this paper, we replace some of matrix multiplications with multiple multiplications to save the memory cost and provide an efficient way for solving 2D-MELPP. We test it on public databases: random 3D data set, ORL, AR face database and Polyu Palmprint database and compare it with other 2D methods like 2D-LDA, 2D-LPP and 1D methods like LPP and exponential locality preserving projections (ELPP), finding it outperforms than others in recognition accuracy. We also compare different dimensions of projection vector and record the cost time on the ORL, AR face database and Polyu Palmprint database. The experiment results above proves that our advanced algorithm has a better performance on 3 independent public databases.

스테레오비전 센서의 3D 궤적 정보를 이용한 상지 재활 동작 인식 (Recognition of Physical Rehabilitation on the Upper Limb Function using 3D Trajectory Information from the Stereo Vision Sensor)

  • 권기현;이형봉
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권8호
    • /
    • pp.113-119
    • /
    • 2013
  • 뇌졸중 및 척수 신경 손상으로 인해 재활에 대한 요구는 증대되고 있다. 재활 영역 중에서도 상지(上肢) 재활은 신경의 복잡도로 인해 매우 어렵고 시간이 많이 걸린다. 재활은 전문치료사가 시설에서 작업치료를 하는 것이 효과적이기는 하나, 접근성, 상시성, 자발성 등에 대한 문제와 함께 비용과 시간이 많이 소요되는 문제점을 가지고 있다. 이 논문에서는 상지 재활 동작을 인식하기 위해 스테레오 비전 센서를 통해 취득한 3D 궤적정보에 대해 PCA, ICA, LDA, SVM의 패턴인식 알고리즘을 적용하여 인식정확도 및 실행시간을 구하고, 여러 패턴인식 알고리즘 중에서 어떤 알고리즘이 인식정확도 및 실행시간 측면에서 적용이 가능한지 제시한다. 실험결과, PCA, ICA는 인식정확도가 낮아 사용하기에 부적합하며 LDA, SVM은 인식정확도가 우수하여 상지 재활 동작 인식에 사용이 적합함을 보인다.