• Title/Summary/Keyword: Cylindrical actuator

Search Result 55, Processing Time 0.027 seconds

Development of Synthetic-Jet based micro air pump for BOP system of mobile fuel cell (모바일 연료전지 BOP를 위한 Synthetic-Jet 기반 마이크로 에어펌프 개발)

  • Kim, K.S.;Choi, J.P.;Koo, B.S.;Jang, J.H.;Seo, Y.H.;Kim, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.247-251
    • /
    • 2008
  • This paper presents a micro air pump actuated by PZT actuator (synthetic jet actuator) for air supply for micro fuel cells. The synthetic jet actuators are usually created by a traditional PZT-driven actuator, which consists of a small cylindrical cavity, in/outlet channel and PZT diaphragms. To design the micro air pump, a numerical analysis has been conducted for flow characteristics with respect to various geometries. A prototype of the micro air pump, with a size of $mm{\times}mm{\times}mm$, was fabricated by PDMS replication process and was conducted performance test. To control the PZT actuator, we used the SP4423 micro chips that can be amplified input voltage to reduce the controller size and the power consumption. With a voltage of 3V at 100Hz, the air pump's pumping pressure is 600pa and its power consumption is only 0.1mW.

  • PDF

Application of the impact drive principle to the alignment of workpieces on rotating supports

  • Bergander, Arvid;Yamagata, Yutaka;Higuchi, Toshiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.315-318
    • /
    • 1996
  • In this paper a new positioning method for cylindrical work pieces on rotating supports is studied. A work piece on a rotating axis is positioned by an impact drive mechanism (IDM) whose driving parameters are steadily updated by observing the object movement. The application of this actuator and the use of a multi-functional PC board for all necessary input and output operations such as e.g. data acquisition or wave form generation allow an alignment with a precision of less than 1.mu.m in a relatively short time and at low cost compared to conventional methods.

  • PDF

Modal Analysis and Vibration Control of Smart Hull Structure (스마트 Hull 구조물의 모달 해석 및 진동 제어)

  • Sohn, Jung-Woo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.299-304
    • /
    • 2008
  • Dynamic characteristics of smart hull structure are investigated and active vibration control performance is evaluated. Dynamic model of smart hull structure with surface bonded Macro-fiber Composite (MFC) actuators is established by analytical method. Equations of motion of the host hull structure are derived based on Donnell-Mushtari equilibrium equations for a thin cylindrical shell. A general model for the interaction between hull structure and MFC actuator is included in the dynamic model. Modal analysis is then conducted and mode shapes and corresponding natural frequencies are investigated. After constructing of the optimal control algorithm, active vibration control performance of the proposed system is evaluated. It has been shown that structural vibration can be reduced effectively with proper control input.

  • PDF

Modal Analysis and Vibration Control of Smart Hull Structure (스마트 Hull 구조물의 모달 해석 및 진동 제어)

  • Sohn, Jung-Woo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.8
    • /
    • pp.832-840
    • /
    • 2008
  • Dynamic characteristics of smart hull structure are investigated and active vibration control performance is evaluated. Dynamic model of smart hull structure with surface bonded macro-fiber composite(MFC) actuators is established by analytical method. Equations of motion of the host hull structure are derived based on Donnell-Mushtari equilibrium equations for a thin cylindrical shell. A general model for the interaction between hull structure and MFC actuator is included in the dynamic model. Modal analysis is then conducted and mode shapes and corresponding natural frequencies are investigated. After constructing of the optimal control algorithm, active vibration control performance of the proposed system is evaluated. It has been shown that structural vibration can be reduced effectively with proper control input.

Experimental and Characteristic Analysis of Tubular Type Linear Oscillating Actuator with Halabch Magnetized PMs Mover (Halbach배열 영구자석 가동자로 구성된 Tubular형 직선 왕복 액추에이터의 특성해석 및 실험)

  • Jang, S.M.;Choi, J.Y.;Lee, S.H.;Lee, S.L.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.756-758
    • /
    • 2003
  • In the machine tool industry, direct drive linear motor technology is of increasing interest as a means to achieve high acceleration, and to increase reliability. This paper deals with the characteristics of tubular type linear oscillating actuator with Halbach magnet array. The magnetic field solutions are derived analytically in terms of vector potential, two dimensional cylindrical coordinate system and Maxwell's equations. Motor thrust, flux linkage, back emf are then derived. The results are shown in good conformity with those obtained from the commonly used finite element method. Test results such as thrust measurements are also given to confirm the analysis.

  • PDF

Design and Analysis of Tubular Type Linear Oscillatory Actuator with Axially Magnetized Permanent magnet (축방향으로 자화된 영구자셕 가동자를 갖는 Tubular형 직선 왕복 액추에이터의 전자기적 특성해석 및 설계)

  • Jang, Seok-Myeong;Seo, Jung-Chul;Choi, Jang-Young;You, Dea-Joon;Cho, Han-Wook;Jang, Won-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1017-1019
    • /
    • 2005
  • This paper deals with tubular type linear oscillatory actuator with axially magnetized permanent magnet. The magnetic field distribution is predicted using a two-dimensional analytical solution derived in terms of magnetic vector potential and cylindrical coordinate system. Using this result, trust and flux linkage and back emf are derived. The results of predictions from the analysis are compared with corresponding finite element method.

  • PDF

Characteristic Analysis of an Traveling Wave Ultrasonic Motor using a Cylindrical Dynamic Contact Model

  • Ro, Jong-Suk;Yi, Kyung-Pyo;Chung, Tae-Kyung;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1415-1423
    • /
    • 2013
  • The traveling wave ultra-sonic motor (TWUSM) is operated through the frictional force between the rotor and the stator. Hence, the contact mechanism should be analyzed to estimate the motor performance. However, the nonlinearity of the contact mechanism of the TWUSM makes it difficult to propose a proper contact model and a characteristic analysis method. To address these problems, a novel contact model is proposed and be termed the cylindrical dynamic contact model (CDCM) in this research. An estimation method of the motor performance is proposed using the CDCM, an analytical method, and a numerical method. The feasibility and usefulness of the proposed characteristic analysis are verified through experimental data.

A Study on the Experimental Dynamic Identification of Cylindrical Oil Dampers in the Wide Frequency Range (넓은 주파수 범위에서의 실린더형 유체 댐퍼에 대한 실험적 동특성 규명 연구)

  • Moon, S.J.;Kim, H.S.;Chung, T.Y.;Lee, D.H.;Hwang, J.Y.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.528-536
    • /
    • 2010
  • System identification for cylindrical oil dampers is carried out based on a series of dynamic experimental tests and theoretical approach for the analysis of the experimental data. Experimental tests are conducted using a specific hydraulic actuator in the wide frequency range from 10 Hz to 90 Hz. From this study, it is confirmed that control force of the damper is composed of inertia, damping and restoring components. In general, both restoring and damping components are significant and comparable. However, the portion of the inertia components becomes more significant than to be negligible in the high frequency range.

A development of cylindrical type Linear Pulse Motor (원통형 LPM의 설계 및 제작기법에 관한 연구)

  • Kim, Moon-Hwan;Lee, Nam-Ki;Ahn, Jong-Bo;Kim, Kook-Hun;Yi, Dong-Young;Lee, Sang-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2073-2075
    • /
    • 1998
  • A cylindrical type Linear Pulse Motor (LPM) was designed as a linear motion actuator. In this paper, it is mentioned the mechanical design method of the LPM. It was designed as a prototype to estimate a new linearization control method for the nonlinear thrust force which is caused by the variable reluctance of the LPM. The designed LPM is determined a variable reluctance type to except the term of permanent magnetic force. The concreted figures and the dimensions will be described.

  • PDF