• Title/Summary/Keyword: Cylinder Valve

Search Result 557, Processing Time 0.031 seconds

고주파수 PWM제어를 이용한 ABS의 맥동 저감에 관한 연구 (A Study on Falling Pressure Surge of ABS Using High Frequency PWM Control)

  • 이용주;김병우;박호
    • 한국공작기계학회논문집
    • /
    • 제12권3호
    • /
    • pp.38-44
    • /
    • 2003
  • The solenoid valve in ABS hydraulic modulator is a two directional on-off valve and is controlled by around 100Hz high speed pulse width modulation. When the valve is switched from open state to closed state, noise and vibration due to pressure surge phenomena in the hydraulic line and wheel cylinder are made. In this study, we identify Pressure surge phenomenon in the braking process of a ABS, and investigate the way to reduce the phenomenon. For the purpose of theoretical analysis on the pressure surge in the closed state hydraulic line, characteristic curve method based on wave equation was utilized. To reduce the surge, high frequency control of 20kHz was attempted. The result showed that the surge pressure of 50% was reduced compared to one observed in the low frequency control. Duty variation of high frequency can control current of solenoid valve and prevent sudden change of displacement.

LPG 용기용 밸브의 밀봉부품 크랙 및 결함에 관한 실험적 고찰 (Experimental Investigation on Cracks and Defects of a Valve Sealing Components for a LPG Cylinder)

  • 김청균;이병관;김태환
    • 한국가스학회지
    • /
    • 제11권1호
    • /
    • pp.23-28
    • /
    • 2007
  • 본 본문에서는 LPG 용기용 가스밸브의 O-링과 밸브패킹의 밀봉결함과 크랙에 관련된 실험적 연구를 수행하고자 한다. LP 가스의 누출을 방지하기 위해 사용하는 O-링은 LPG 밸브의 밀봉 안전성을 확보하는 핵심부품으로 대단히 중요하다. 밸브패킹은 LPG 연료의 공급과 충전을 하는데, 가스 공급구를 열고 닫는 중요한 역할을 담당한다. 이들 두개의 밀봉부품에 대한 성능은 밸브의 누설 안전성과 장수명에 밀접한 관련이 있다. 연구결과에 의하면, O-링의 대부분은 파티션 부근의 결합불량과 과도한 압축률로 인해 원주방향으로 크랙이 발생하는 것으로 분석되었다. 그 이외의 결함으로 거론된 경우는 LP가스의 과도한 가스압력으로 인한 압출현상의 발생은 압출크랙을 일으키는 원인으로 작용하고 있다. 따라서 본 논문에서는 가스밸브의 누설 안전성을 확보하고 수명을 연장하기 위해 O-링과 밸브패킹에 대한 엄격한 품질관리와 인증제도의 도입을 권장하고자 한다. 결국에는 LPG용기용 밸브의 품질과 안전성 확보를 위해 밀봉장치에 대한 품질안전 보증제도를 도입해야 밸브를 오랫동안 사용할 수 있을 것이다.

  • PDF

천연가스엔진의 실린더내 흡기유동개선에 관한 연구 (A Study on the Improvement of In-Cylinder Flow Motion in the Natural Gas Engine)

  • 서승우;정동수;오승묵;최교남
    • 연구논문집
    • /
    • 통권23호
    • /
    • pp.121-126
    • /
    • 1993
  • In general, natural gas engine converted from gasoline engine has disadvantage of power decrease. In order to increase power output in natural gas engine, the improvement of in-cylinder flow motion has been believed as the most effective method. In this study, the geometry of combustion chamber in 4 valve DOHC natural gas engine is modified, and in-cylinder flow patterns are analyized. Also engine performance is evaluated according to the modification of in-cylinder flow motion.

  • PDF

구조 안전성을 고려한 수소 연료 전지차 용기 밸브의 솔레노이드 액추에이터 설계 (Design of Solenoid Actuator for FCV Cylinder Valve Considering Structural Safety)

  • 이효렬;안중환;신진오;김화영
    • 한국생산제조학회지
    • /
    • 제25권3호
    • /
    • pp.157-163
    • /
    • 2016
  • Green vehicles include electric vehicles, natural gas vehicles, fuel cell vehicles (FCV), and vehicles running on fuel such as a biodiesel or an ethanol blend. An FCV is equipped with a cylinder valve installed in an ultra-high pressure vessel to control the hydrogen flow. For this purpose, an optimum design of the solenoid actuator is necessary to ensure reliability when driving an FCV. In this study, an electromagnetic field analysis for ensuring reliable operation of the solenoid actuator was conducted by using Maxwell V15. The electromagnetic field analysis was performed by magnetostatic technique, according to the distance between magnetic poles in order to predict the attraction force. Finally, the attraction force was validated through comparison between the Maxwell results and measurement results. From the results, the error of attraction force ranged from 4.53 % to 9.05 % at testing conditions.

MPWM을 이용한 공압 실린더의 지능제어 (Intelligent control of pneumatic actuator using MPWM)

  • 송인성;표성만;안경관;양순용;이병룡
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.530-535
    • /
    • 2002
  • Pneumatic control system has been applied to build many industrial automation systems. But most of them are sequence control type because of their low costs, safety, reliability, etc. Pneumatic servo system is rarely applied to real industrial fields because accurate position control is very difficult due to its nonlinearity and compressibility of air. In pneumatic servo control system, a pneumatic servo valve can be applied, But it is very expensive and has no advantage of low cost compared with a common pneumatic system. This paper is concerned with the accurate position control of a rodless pneumatic cylinder using on/off solenoid valve. A novel Intelligent Modified Pulse Width Modulation(MPWM) is newly proposed. The control performance of this pneumatic cylinder depends on the external loads. To overcome this problem, switching of control parameter using artificial neural network is newly proposed, which estimates external loads on rodless pneumatic cylinder using this training neural network. As an underlying controller, a state feedback controller using position, velocity and acceleration is applied in the switching control the system. The effectiveness of the proposed control algorithms are demonstrated through experiments nth various loads.

  • PDF

스월 제어 밸브를 적용한 직접분사식 가솔린 엔진의 희박연소 특성 (Lean burn Combustion Characteristics of Direct Injection Gasoline Engine with Swirl Control Valve)

  • 이민호;문학훈;차경옥
    • 한국분무공학회지
    • /
    • 제9권2호
    • /
    • pp.9-17
    • /
    • 2004
  • The performance characteristics of lean burn system in gasoline engine are mainly affected by the air-fuel mixture in cylinder, gas exchange process of manifold system, exhaust emission of engine, and the electronic engine control system. In order to obtain the effect of performance factors on the optimum conditions of lean burn engine, this study deal with the behavior of mixture formation, gas flow characteristics of air, flow and evaporation analysis of spray droplet in cylinder, vaporization and burning characteristics of lean mixture in the engine, and the control performance of electronic engine control system. The optimum flow conditions were investigated with the swirl and tumble flows in the combustion chamber with swirl control valve. The performance characteristics and optimum condition of flow field in intake system were analyzed by the investigation of inlet flow of air and combustion stabilization on cylinder.

  • PDF

Steady-Flow Characteristics and Its Influence on Spray for Direct Injection Diesel Engine

  • Jeon, Chung-hwan;Park, Seung-hwan;Chang, Young-june
    • Journal of Mechanical Science and Technology
    • /
    • 제16권7호
    • /
    • pp.986-998
    • /
    • 2002
  • Flow and spray characteristics are critical factors that affect the performance and exhaust emissions of a direct injection diesel engine. It is well known that the swirl control system is one of the useful ways to improve the fuel consumption and emission reduction rate in a diesel engine. However, until now there have only been a few studies on the effect of flow on spray. Because of this, the relationship between the flow pattern in the cylinder and its influence on the behavior of the spray is in need of investigation. First, in-cylinder flow distributions for 4-valve cylinder head of DI (Direct Injection) Diesel engine were investigated under steady-state conditions for different SCV (Swirl Control Valve) opening angles using a steady flow rig and 2-D LDV (Laser Doppler Velocimetry). It was found that swirl flow was more dominant than that of tumble in the experimented engine. In addition, the in-cylinder flow was quantified in terms of swirl/tumble ratio and mean flow coefficient. As the SCV opening angle was increased, high swirl ratios more than 3.0 were obtained in the case of SCV -70° and 90°. Second, spray characteristics of the intermittent injection were investigated by a PDA (Phase Doppler Anemometer) system. A Time Dividing Method (TDM) was used to analyze the microscopic spray characteristics. It was found that the atomization characteristics such as velocity and SMD (Sauter Mean Diameter) of the spray were affected by the in-cylinder swirl ratio. As a result, it was concluded that the swirl ratio improves atomization characteristics uniformly.

공압 실린더 액츄에이터 위치제어 (Position Control of a Pneumatic Cylinder Actuator using PLC and Proximity Sensors)

  • 권순홍;최원식;정성원;박종민;권순구;서정덕
    • 한국기계가공학회지
    • /
    • 제10권6호
    • /
    • pp.50-55
    • /
    • 2011
  • The fluid power products are widely used in current industrial area such as automation of products and equipment assembly, high-tech machine tool, aircraft, train, and etc. As the development of industry is in progress, the development of the fluid power products is demanding and it is required in every industrial area. This research proposed a pneumatic system to evaluate displacement accuracy of the pneumatic actuator without external load and to analyze capability of integration of the valve system. The pneumatic system consisted of a combination of pneumatic actuator, four two-port valves, two three-port valves, two pressure valve, a check valve, two proximity sensors, and a program logic controller (PLC). The position controller is based on the PLC connected with the proximity sensors. The maximum air pressure applied for tests was $49.05N/cm^2$ and the displacement accuracy of a stroke was measured using a dial gauge. The supply- and discharge-side of air pressure and the length of the stroke of the pneumatic cylinder were varied The test of the position control of the pneumatic cylinder was carried out 50 times at each supply- and discharge-side air pressure of 24.53/34.34, 29.43/39.24, 34.34/44.15, and $39.24/49.05N/cm^2$ and replicated three times. The accuracy of the displacement of the pneumatic cylinder stroke increased as the supply- and discharge-side of air pressure increased with the stroke length of 133mm. Also the displacement accuracy increased as the stroke length increased with the fixed supply- and discharge-side of air pressure of the pneumatic cylinder as 34.34 and $44.15N/cm^2$, respectively. The most accurate displacement of the pneumatic cylinder was obtained at the supplyand discharge-side of air pressure of 39.24 and $49.05N/cm^2$, respectively, and strokes of 170 and 190mm.

양방향 회전형 사축식 유압 피스톤 펌프의 벨브 플레이트 형상이 토크 맥동에 주는 영향 (Influence of valve plate configuration on torque ripple of a bi-directional bent-axis type hydraulic piston pump)

  • 김성훈;홍예선;김두만
    • 한국항공우주학회지
    • /
    • 제35권3호
    • /
    • pp.231-237
    • /
    • 2007
  • EHA용 유압 펌프의 토크 맥동은 저속 회전 영역에서 실린더 위치의 제어에 외란으로 작용할 수 있다. 원칙적으로 피스톤 펌프에 의해 발생되는 반력 토크의 주기적인 변화는 실린더 압력의 파형과 밀접한 관계를 가지고 있다. 일정 속도로 회전하는 단방향 피스톤 펌프의 경우에는 밸브 플레이트의 예압각이나 노치를 활용하여 실린더 압력의 오버슈트나 변화율을 조절할 수 있다. 따라서 본 연구에서는 밸브 플레이트의 형상이 EHA용 사축식 유압 피스톤 펌프의 토크 맥동에 미치는 영향을 분석하였다. 그 결과로서, 양방향 회전형 유압 피스톤 펌프의 토크 맥동은 회전 속도의 영역에 무관하게 밸브 플레이트의 예압각이나 노치를 이용하여 개선하는 것이 불가능한 것으로 나타났다.

밸브 리프트 변화에 따른 실린더 내 흡입 공기의 유동 특성 (In -Cylinder Flow Characteristics Varying Intake Valve Lift)

  • 윤정의
    • 한국자동차공학회논문집
    • /
    • 제7권9호
    • /
    • pp.82-88
    • /
    • 1999
  • The object of this study is to find new evaluation index for in-cylinder flow chracteristics istead of current swirl, tumble coefficient using steady flow test rig on intake port system. To this end, port flow system. To this end, port flow rig test was conducted on DOHC head varying intake valve lift respectively. Finally combination angular coefficient and inclination angle were introduced as new evaluation index for in-cylinder angularflow characteristics instead of swirl and tumble coefficient.

  • PDF