• Title/Summary/Keyword: Cyclooxygenase pathways

Search Result 121, Processing Time 0.043 seconds

In vitro Anti-oxidative and Anti-inflammatory Activities of Horse-bone Extract via Up-regulation of Heme-oxygenase 1 (말뼈추출물의 Hemeoxygenase-1의 발현 조절을 통한 시험관내 항염증 효과)

  • Im, Eun Ju;Lee, Ki-Ja;Cho, Gil-Jae;Kim, Hyun-Kyoung;Kim, Suk;Rhee, Man Hee
    • Journal of agriculture & life science
    • /
    • v.50 no.2
    • /
    • pp.139-150
    • /
    • 2016
  • Few studies have been reported that horse-bone extract(HBE) can prevent and treatment of bone diseases. However, HBE' therapeutic activities are still not fully understood. This study determined whether HBE up-regulates hemeoxygenase 1(HO-1) and this mediates its anti-inflammatory effect in murine macrophages.Nitric oxide(NO) assay, MTT assay and DPPH assay were performed. In addition, Western blotting and real time PCR were used to determine protein expression, and gene expression, respectively. HBE significantly inhibited NO production without observable cytotoxicity. In addition, HBE attenuated inducible nitric oxide synthase (iNOS), cyclooxygenase-2(COX-2) and phospho (p)-ERK protein expressions in LPS(0.1㎍/ml) stimulated RAW264.7 cells. On the other hand, HBE alone up-regulated HO-1 and Nrf-2 expressions, which mediated HBE's anti-inflammatory effect in RAW264.7 cells. Finally, HBE up-regulated HO-1 and impaired ERK1/2 signaling pathways, and thus it may provide protection against cellular oxidation and inflammation.

The immune enhancement effect of Cheonggukjang Water Extract (CWE) via activation of NF-κB pathways in murine macrophage RAW 264.7 cells (RAW 264.7 대식세포에서 청국장 열수 추출물(Cheonggukjang Water Extract, CWE)의 면역 증강 효과)

  • Sehyeon Jang;San Kim;Se Jeong Kim;Sung Ran Yoon;Bo Ram So;Jung A Ryu;Jeong Min Park;Sung Keun Jung
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.282-288
    • /
    • 2023
  • Due to the COVID-19 pandemic, the immuneenhancing health functional food market that protects our bodies from pathogens such as viruses continues to grow. In this study, we aimed to prove the Cheonggukjang, a high-nutrient food with high protein, fat, and dietary fiber content, as an immuneenhancing nutraceutical. Cheonggukjang water extract (CWE) increased the production of nitric oxide, reactive oxygen species, and cytokines such interleukin (IL)-6, IL-1β, and tumor necrosis factor-α without affecting viability in RAW 264.7 cells. Furthermore, CWE significantly upregulated the expression of inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 cells. CWE enhanced the phosphorylation of I kappa B kinase α/β and I kappa B (IκB)α, as well as the degradation of IκBα. CWE also induced increased phosphorylation of nuclear factor-kappa B p65 and facilitated the redistribution of p65 from the cytoplasm to the nucleus in RAW 264.7 cells. These findings suggest that CWE has potential as a health functional food material that can enhance the innate immune response.

Modulation of Nrf2/ARE and Inflammatory Signaling Pathways by Hericium erinaceus Mycelia Extract

  • Jin, Kyong-Suk;Park, Ji-Young;Cho, Mi-Kyung;Jang, Ji-Hyun;Jeong, Jae-Han;Ok, Seon;Bak, Min-Ji;Song, Young-Sun;Kim, Myo-Jeong;Cho, Chung-Won;Jeong, Woo-Sik
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1204-1211
    • /
    • 2009
  • Hericium erinaceus is an edible mushroom used as a medicinal food in Asian countries. In this study, the chemopreventive effects of H. erinaceus mycelia hot water extract (HEW) were evaluated. HEW remarkably induced the luciferase activity of the antioxidant response element (ARE), located in the promoter region of phase 2 and antioxidant genes and regulated by nuclear factor E2-related factor 2 (Nrf2). The up-regulation of ARE activity by HEW corresponded with the induction of Nrf2 and the antioxidant enzyme, hemeoxygenase-1. The inhibition of cyclooxygenase-2 (COX-2) activity is a promising effective approach in cancer chemoprevention, and HEW prominently suppressed COX-2 protein expression in HepG2 cells. Furthermore, HEW showed anti-inflammatory activity by modulating inflammatory mediators such as nitric oxide (NO), inducible NO synthase, tumor necrosis factor-${\alpha}$, interleukin-$1{\beta}$, and the transcription factor, nuclear factor-${\kappa}B$, in lipopolysaccharide-stimulated RAW 264.7 cells. These results suggest that H. erinaceus possessed anti-tumor and anti-inflammatory effects via the modulation of Nrf2/ARE and inflammatory signaling pathways, and may therefore have potential use as a natural chemopreventive agent.

Anti-inflammatory effects of DATS via suppression of cross talk between the TLR4/NF-κB and CXCL12/CXCR4 pathways in LSP-stimulated RAW 264.7 macrophages (LSP로 유도된 RAW 264.7 대식세포에서 TLR4/NF-κB와 CXCL12/CXCR4 경로 억제를 통한 DATS의 항염증 효과)

  • Jeong, Yong Tae;Hwang, Buyng Su;Kim, Min-Jin;Shin, Su Young;Oh, Young Taek;Kim, Chul Hwan;Eom, Jung Hye;Lee, Seung Young;Choi, Kyung Min;Jeong, Jin-Woo;Cho, Pyo Yun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.113-113
    • /
    • 2019
  • Diallyl trisulfide (DATS) is an organic polysulfide compound found in garlic. Although certain studies have demonstrated that DATS possesses strong anti-inflammatory activity, the underlying molecular mechanisms remain largely unresolved. In this study, we examined whether DATS exerts anti-inflammatory activity and investigated the possible mechanisms. Our results indicated that DATS significantly suppressed the lipopolysaccharide (LPS)-induced release of nitric oxide (NO) and prostaglandin E2 by inhibiting inducible NO synthase and cyclooxygenase-2 expression at the transcriptional and post-transcriptional levels in RAW 264.7 macrophages. DATS also down-regulated Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 expression, and inhibited nuclear translocation of nuclear transcription factor-kappa B (NF-${\kappa}B$) in LPS-stimulated 264.7 macrophages. Furthermore, we found that these inhibitory effects of DATS were associated with the inhibition of chemokine receptor (CXCR4) and ligand (CXCL12) expression, and reactive oxygen species generation. Overall, the present data indicated that DATS had anti-inflammatory effects on LPS-activated macrophages, possibly via inhibiting the TLR4/NF-kB and/or chemokine signaling pathways, and DATS could be a potential drug therapy for inflammation and its associated diseases.

  • PDF

Effects of Curcumae longae Rhizoma and Cinnamomi Ramulus Mixture on Anti-inflammatory Activities in Lipopolysaccharide-stimulated RAW 264.7 Cells (강황(薑黃) 계지(桂枝) 복합물이 RAW 264.7 세포에서 항염증 활성에 미치는 영향)

  • Ji, Choi;Hae-Jin, Park;Il-ha, Jeong;Min Ju, Kim;Mi-Rae, Shin;Seong-Soo, Roh;Soon-Ae, Park;Mi-Lim, Kim
    • The Korea Journal of Herbology
    • /
    • v.38 no.2
    • /
    • pp.17-26
    • /
    • 2023
  • Objectives : A persistent inflammatory response can cause diseases such as fibrosis, cancer, and allergies. This study aimed to investigate the anti-inflammatory activity of Curcumae longae Rhizoma and Cinnamomi Ramulus Mixture (CCM) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Methods : The total polyphenol and flavonoid contents of CCM were confirmed through an in vitro experiment. Also, radical scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and Hydroxyl were confirmed. Moreover, ferric reducing antioxidant power (FRAP) activity were confirmed. After, CCM (50, 100, and 200 ㎍/mL) were applied to 0.1 ㎍/mL LPS-stimulated RAW264.7 cells. The levels of nitric oxide (NO) and pro-inflammatory cytokines in the supernatant fraction were determined. Also, the expressions of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways were detected using Western blot. Results : As a result of in vitro experiments, there was an excellent antioxidant activity in CCM-treated cells. In addition, in RAW264.7 cells stimulated with LPS, the increased NO level was inhibited in a concentration-dependent manner by the treatment of CCM. In addition, inflammatory cytokines production were significantly inhibited in a concentration-dependent manner in CCM-treated group. CCM treatment significantly decreased the protein expressions of MAPKs. Moreover, the expressions of NF-κBp65 and cyclooxygenase-2 (COX-2) were significantly decreased when 200 mg/kg of CCM was applied, and phospho-inhibitor of nuclear factor kappa B-α (p-IκBα) and inducible nitric oxide synthase (iNOS) were significantly decreased at all concentrations treated with CCM. Conclusion : Our findings show that CCM exhibited excellent antioxidant activity and exhibited superior anti-inflammatory effect through the MAPKs and NF-κB pathways in LPS-stimulated RAW 264.7 macrophages.

Calcitonin Gene-related Peptide Suppresses Pacemaker Currents by Nitric Oxide/cGMP-dependent Activation of ATP-sensitive K+ Channels in Cultured Interstitial Cells of Cajal from the Mouse Small Intestine

  • Choi, Seok;Parajuli, Shankar Prasad;Yeum, Cheol Ho;Park, Chan Guk;Kim, Man Yoo;Kim, Young Dae;Cha, Kyoung Hun;Park, Young Bong;Park, Jong Seong;Jeong, Han Seong;Jun, Jae Yeoul
    • Molecules and Cells
    • /
    • v.26 no.2
    • /
    • pp.181-185
    • /
    • 2008
  • The effects of calcitonin gene-related peptide (CGRP) on pacemaker currents in cultured interstitial cells of Cajal (ICC) from the mouse small intestine were investigated using the whole-cell patch clamp technique at $30^{\circ}C$. Under voltage clamping at a holding potential of -70 mV, CGRP decreased the amplitude and frequency of pacemaker currents and activated outward resting currents. These effects were blocked by intracellular $GDP{\beta}S$, a G-protein inhibitor and glibenclamide, a specific ATP-sensitive $K^+$ channels blocker. During current clamping, CGRP hyperpolarized the membrane and this effect was antagonized by glibenclamide. Pretreatment with SQ-22536 (an adenylate cyclase inhibitor) or naproxen (a cyclooxygenase inhibitor) did not block the CGRP-induced effects, whereas pretreatment with ODQ (a guanylate cyclase inhibitor) or L-NAME (an inhibitor of nitric oxide synthase) did. In conclusion, CGRP inhibits pacemaker currents in ICC by generating nitric oxide via G-protein activation and so activating ATP-sensitive $K^+$ channels. Nitric oxide- and guanylate cyclase-dependent pathways are involved in these effects.

PEP-1-GLRX1 protein exhibits anti-inflammatory effects by inhibiting the activation of MAPK and NF-κB pathways in Raw 264.7 cells

  • Shin, Min Jea;Kim, Dae Won;Choi, Yeon Joo;Cha, Hyun Ju;Lee, Sung Ho;Lee, Sunghou;Park, Jinseu;Han, Kyu Hyung;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • v.53 no.2
    • /
    • pp.106-111
    • /
    • 2020
  • Glutaredoxin 1 (GLRX1) has been recognized as an important regulator of redox signaling. Although GLRX1 plays an essential role in cell survival as an antioxidant protein, the function of GLRX1 protein in inflammatory response is still under investigation. Therefore, we wanted to know whether transduced PEP-1-GLRX1 protein inhibits lipopolysaccharide (LPS)- and 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced inflammation. In LPS-exposed Raw 264.7 cells, PEP-1-GLRX1 inhibited cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), activation of mitogen activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-κB) expression levels. In a TPA-induced mouse-ear edema model, topically applied PEP-1-GLRX1 transduced into ear tissues and significantly ameliorated ear edema. Our data reveal that PEP-1-GLRX1 attenuates inflammation in vitro and in vivo, suggesting that PEP-1-GLRX1 may be a potential therapeutic protein for inflammatory diseases.

Anti-inflammatory Effects of the Methanol Extracts of Phlox subulata on LPS-induced RAW264.7 Macrophages and BV2 Microglia (꽃잔디 메탄올 추출물의 RAW264.7 대식세포와 BV2 미세아교세포에서의 항염증 효과)

  • Kim, Kwan-Woo;Li, Jing;Lee, Hwan;Lee, Dong-Sung;Oh, Hyuncheol;Kim, Youn-Chul
    • Korean Journal of Pharmacognosy
    • /
    • v.50 no.4
    • /
    • pp.291-298
    • /
    • 2019
  • Phlox subulata is a perennial herbaceous flower and is a member of the Polemoniaceae family. This plant is known to resist to various stresses including salt, drought, heat, and cold stresses. In this investigation, we evaluated the ant-inflammatory effect of the methanolic extract of P.subulata(PSM) on lipopolysaccharide(LPS)-induced RAW264.7 macrophages and BV2 microglia. PSM reduced the production of nitric oxide(NO) in LPS-stimulated both RAW264.7 and BV2 cells, but did not affect to the production of prostaglandin E2(PGE2). It inhibited the expression of inducible nitric oxide synthase(iNOS) and cyclooxygenase(COX)-2 in both cells. In addition, PSM suppressed the production of pro-inflammatory cytokines including interleukin(IL)-6 and tumor necrosis factor(TNF)-α. These inhibitory effects were contributed by inactivation of nuclear factor kappa B(NF-κB) and mitogen-activated protein kinases(MAPKs) pathways by PSM. Thus, these results suggested that P.subulata can be a candidate material to treat inflammatory diseases.

Suppression Effect of the Inflammatory Response in Macrophages by Paeoniae Radix Rubra Extracts (적작약 추출물의 대식세포에 대한 염증억제 효과)

  • Bak, Jong-Phil;Son, Jung-Hyun;Kim, Yong-Min;Jung, Joon-Hee;Leem, Kang-Hyun;Lee, Eun-Yong;Kim, Ee-Hwa
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.5
    • /
    • pp.373-379
    • /
    • 2011
  • Paeoniae Radix Rubra is a preparation consisting of desiccated roots of Paeonia lactiflora PALL (belonging to Ranunculaceae). Paeoniae Radix Rubra is used as a medicinal herb in Asian countries to treat many diseases. Ethanol- or water-based extracts of Paeoniae Radix Rubra were prepared and tested on RAW 264.7 cells, a murine macrophage cell line. The expression of some pro-inflammatory proteins, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphorylated ERK1/2 was detected by Western blot analyses, while PGE2 expression was quantified by ELISA. Both the water and ethanol extracts of Paeoniae Radix Rubra suppressed LPS-induced nitric oxide (NO) production and exhibited cell toxicity in accordance with increased NO production. Also, both extracts reduced the expression of COX-2 and iNOS, and inhibited phosphorylation of ERK1/2 in LPS-stimulated RAW 264.7 cells. Extracts prepared from Paeoniae Radix Rubra contain anti-inflammatory agents that inhibit the iNOS and MAPK pathways.

Anti-Inflammatory Effects of Hexane Fraction from White Rose Flower Extracts via Inhibition of Inflammatory Repertoires

  • Lee, Hwa-Jeong;Kim, Han-Seok;Kim, Seung-Tae;Park, Dong-Sun;Hong, Jin-Tae;Kim, Yun-Bae;Joo, Seong-Soo
    • Biomolecules & Therapeutics
    • /
    • v.19 no.3
    • /
    • pp.331-335
    • /
    • 2011
  • In this study, we determined the anti-inflammatory activity and mechanism of action of a hexane fraction (hWRF) obtained from white Rosa hybrida flowers by employing various assays such as quantitative real-time PCR, Western blotting, and Electrophoretic-Mobility Shift Assay (EMSA). The results revealed that the hWRF had excellent anti-inflammatory potency by reducing inflammatory repertoires, such as inducible nitric oxide synthase (iNOS), interleukin-$1{\beta}$, and cyclooxygenase-2 (COX-2) in RAW264.7 cells when stimulated with lipopolysaccharide (LPS), a pro-inflammatory mediator. The reduction of nitric oxide (NO) release from RAW 264.7 cells supported the anti-inflammatory effect of hWRF. Interestingly, hWRF effectively inhibited LPS-mediated nuclear factor-${\kappa}B$ (NF-${\kappa}B$) p65 subunit translocation into the nucleus and extracellular signal-regulated kinase (ERK)1/2 phosphorylation, suggesting that hWRF anti-inflammatory activity may be based on inhibition of the NF-${\kappa}B$ and MAPK pathways. Based on the findings described in this study, hWRF holds promise for use as a potential anti-inflammatory agent for either therapeutic or functional adjuvant purposes.